NASH SUBSETS AND MOBILITY CHAINS IN BIMATRIX GAMES

被引:10
作者
HEUER, GA
MILLHAM, CB
机构
[1] CONCORDIA COLL,MOORHEAD,MN
[2] WASHINGTON STATE UNIV,PULLMAN,WA
关键词
D O I
10.1002/nav.3800230213
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:311 / 319
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1957, GAMES DECIS
[2]   AN ALGORITHM FOR FINDING ALL VERTICES OF CONVEX POLYHEDRAL SETS [J].
BALINSKI, ML .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1961, 9 (01) :72-88
[3]  
BOHNENBLUST HF, 1950, ANN MATH STUDIES 24
[4]  
GALE D, 1950, ANN MATH STUDIES 24
[5]  
HEUER GA, TO BE PUBLISHED
[6]  
KUHN HW, 1961, P NATL ACAD SCI USA, V47, P1656
[7]   EQUILIBRIUM POINTS OF BIMATRIX GAMES [J].
LEMKE, CE ;
HOWSON, JT .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (02) :413-423
[8]   EQUILIBRIUM POINTS OF BIMATRIX GAMES [J].
MANGASARIAN, OL .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (04) :778-780
[9]   NASH SUBSETS OF BIMATRIX GAMES [J].
MILLHAM, CB .
NAVAL RESEARCH LOGISTICS, 1974, 21 (02) :307-317
[10]   ON STRUCTURE OF EQUILIBRIUM POINTS IN BIMATRIX GAMES [J].
MILLHAM, CB .
SIAM REVIEW, 1968, 10 (04) :447-&