A UNIFIED APPROACH TO RECURSION OPERATORS OF THE REDUCED (1 + 1)-DIMENSIONAL HAMILTONIAN-SYSTEMS

被引:12
作者
XU, B
机构
[1] Dept. of Maths., Univ., of Sci. and Technol. of China, Hefei, Anhui
关键词
D O I
10.1088/0266-5611/8/4/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the auxiliary linear problems of (2 + 1)-dimensional integrable soliton equations have been shown to be (1 + 1)-dimensional Hamiltonian systems by any higher-order symmetry constraint. In the present letter, a unified approach to recursion operators of these reduced (1 + 1)-dimensional systems is proposed.
引用
收藏
页码:L13 / L20
页数:8
相关论文
共 17 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
Cao C.W., 1989, NONLINEAR PHYS, P68
[3]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[4]   CONSTRAINTS OF THE 2+1 DIMENSIONAL INTEGRABLE SOLITON SYSTEMS [J].
CHENG, Y ;
LI, YS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02) :419-431
[5]  
CHOU T, 1990, SYMMETRY SOLITON THO
[6]  
FOKAS AS, 1987, STUD APPL MATH, V77, P253
[7]  
JIMBO M, 1983, PUBL RIMS KYOTO U, V19, P903
[8]  
KOMPPELCHENKO BG, 1988, INVERSE PROBL, V4, P75
[9]   THE AKNS HIERARCHY AS SYMMETRY CONSTRAINT OF THE KP HIERARCHY [J].
KONOPELCHENKO, B ;
STRAMPP, W .
INVERSE PROBLEMS, 1991, 7 (02) :L17-L24
[10]  
MOSER JJ, 1989, PROGR MATH, V8, P233