RANDOM SPACE-FILLING BY NUCLEATION AND GROWTH

被引:2
|
作者
MEYER, HJ
LACMANN, R
ZIMMERMANN, H
机构
[1] TECH UNIV CAROLO WILHELMINA BRAUNSCHWEIG, INST PHYS & THEORET CHEM, D-38106 BRAUNSCHWEIG, GERMANY
[2] INST ANGEW PHYS, LEHRSTUHL KRISTALLOG, D-91054 ERLANGEN, GERMANY
关键词
D O I
10.1016/0022-0248(94)90150-3
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Space filling by nucleation and growth of clusters for dimensions d = 1, 2, 3 (for some cases up to 6) was simulated on a computer. The following models were considered: (1) simultaneous growth from randomly distributed centres; (2) free nucleation and growth according to the rule l(k) = at; (3) placing of clusters of fixed size; (4) nucleation at active centres and growth. For complete filling frequency distributions for the cluster sizes and (for d = 2) figures of the cluster texture are given. Further the spatial distributions and the pair-distribution functions for the cluster centres are investigated. The degree of filling theta(t) in general satisfies the theory of Kolmogorov-Johnson-Mehl-Arvami; only for theta almost-equal-to 1 and for k > 1 deviations are found. Besides the ''fictitious cluster sum'' sigma(f)(''extended area'' after Avrami), also the ''actual cluster sum'' sigma(a) is discussed, which gives the total volume (without overlapping) of the present clusters. The equation dtheta = (1 - theta)xdsigma(a) holds, where x is fixed by the spatial distribution of the clusters and increases with the dimension d and with 1/k. The experimental cluster densities agree with the results of the theoretical considerations.
引用
收藏
页码:571 / 586
页数:16
相关论文
共 50 条
  • [31] Space-filling curve RFID tags
    Mcvay, J
    Hoorfar, A
    Engheta, N
    2006 IEEE RADIO AND WIRELESS SYMPOSIUM, PROCEEDINGS, 2006, : 199 - 202
  • [32] Space-filling branes of gravitational ancestry
    Bunster, Claudio
    Perez, Alfredo
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [33] ON THE CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS
    Sun, Fasheng
    Liu, Min-Qian
    Qian, Peter Z. G.
    ANNALS OF STATISTICS, 2014, 42 (04): : 1394 - 1425
  • [34] The Area Derivative of a Space-Filling Diagram
    Robert Bryant
    Herbert Edelsbrunner
    Patrice Koehl
    Michael Levitt
    Discrete & Computational Geometry, 2004, 32 : 293 - 308
  • [35] SHORT ALGORITHMS FOR SPACE-FILLING CURVES
    GOLDSCHLAGER, LM
    SOFTWARE-PRACTICE & EXPERIENCE, 1981, 11 (01): : 99 - 99
  • [36] Space-filling bearings in three dimensions
    Baram, RM
    Herrmann, HJ
    Rivier, N
    PHYSICAL REVIEW LETTERS, 2004, 92 (04) : 4
  • [37] Practical choices for space-filling designs
    Lu, Lu
    Anderson-Cook, Christine M.
    Martin, Miranda
    Ahmed, Towfiq
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (03) : 1165 - 1188
  • [38] Space-filling curves in geospatial applications
    Gutman, R
    DR DOBBS JOURNAL, 1999, 24 (07): : 115 - +
  • [39] Space-Filling Designs for Robustness Experiments
    Joseph, V. Roshan
    Gu, Li
    Ba, Shan
    Myers, William R.
    TECHNOMETRICS, 2019, 61 (01) : 24 - 37
  • [40] Fuzzification using space-filling curves
    Elshafei, M
    Ahmed, MS
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2001, 7 (02): : 145 - 157