THE RADON-TRANSFORM ON HYPERBOLIC SPACE

被引:0
作者
KURUSA, A [1 ]
机构
[1] BOLYAI INST,H-6720 SZEGED,HUNGARY
关键词
RADON TRANSFORM; SPHERICAL HARMONICS; HYPERBOLIC GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Radon transform that integrates a function in H(n), the n-dimensional hyperbolic space, over totally geodesic submanifolds with codimension 1 and the dual Radon transform are investigated in this paper. We prove inversion formulas and an inclusion theorem for the range.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 15 条
[1]  
BERENSTEIN CA, IN PRESS DUKE MATH J
[2]   THE RADON-TRANSFORM ON A FAMILY OF CURVES IN THE PLANE [J].
CORMACK, AM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (02) :325-330
[3]   THE RADON-TRANSFORM ON A FAMILY OF CURVES IN THE PLANE .2. [J].
CORMACK, AM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 86 (02) :293-298
[4]   A RADON-TRANSFORM ON SPHERES THROUGH THE ORIGIN IN RN AND APPLICATIONS TO THE DARBOUX EQUATION [J].
CORMACK, AM ;
QUINTO, ET .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 260 (02) :575-581
[5]   GEGENBAUER TRANSFORMS VIA THE RADON TRANSFORM [J].
DEANS, SR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (03) :577-585
[6]   UNIFIED RADON INVERSION FORMULA [J].
DEANS, SR .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) :2346-2349
[7]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[8]   DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES [J].
HELGASON, S .
ACTA MATHEMATICA, 1959, 102 (3-4) :239-299
[9]  
Helgason S., 1980, RADON TRANSFORM
[10]  
HELGASON S, 1989, CONT MATH, V0113, P00141