Neural network segmented CD algorithm-based PET liver image reconstruction

被引:2
|
作者
Prasath, T. Arun [1 ]
Rajasekaran, M. Pallikonda [2 ]
Kannan, S. [3 ]
机构
[1] Kalasalingam Univ, Dept Instrumentat & Control Engn, Krishnankoil 626126, Tamil Nadu, India
[2] Kalasalingam Univ, Dept Elect & Commun Engn, Krishnankoil 626126, Tamil Nadu, India
[3] Ramco Inst Technol, Dept Elect & Elect Engn, Rajapalayam 626117, Tamil Nadu, India
关键词
PET liver image; positron emission tomography; image reconstruction; neural network segmentation; WLS; weighted least squares; CD; coordinate descent; iterative algorithm; EM; expectation-maximisation algorithm;
D O I
10.1504/IJBET.2015.068110
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, reconstruction of the Positron Emission Tomography (PET) images, a CD algorithm was instigated with NN based image segmentation techniques called Neural Network Segmentation based Coordinate DescentWeighted Least Square (NNCD-WLS). Thus, NNCD-WLS of the function is not quadratic, but natural. The iterative algorithm achieve a fashion equivalent to an analytic derivation of the Maximum Likelihood-Expectation Maximisation (ML-EM) algorithm, which gives a different minimisation process between two convex sets of matrices. Conversely the distance metric is quite distinct, and more intricate to analyse. This algorithm is similar type, shares many properties acquainted with the ML-EM algorithm. Unlike WLS algorithm, NNCD-WLS method minimises the WLS objective function. The NNCD-WLS algorithm instigates via NN based segmentation process in image reconstruction. Image quality parameter of the PSNR value, NNCD-WLS algorithm and the denoising algorithm is compared. The PET input image is reconstructed and simulated in the MATLAB/Simulink package.
引用
收藏
页码:276 / 289
页数:14
相关论文
共 50 条
  • [21] Multiobjective neural network for image reconstruction
    Wang, Y
    Wahl, FM
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1997, 144 (04): : 233 - 236
  • [22] Anatomically aided PET image reconstruction using deep neural networks
    Xie, Zhaoheng
    Li, Tiantian
    Zhang, Xuezhu
    Qi, Wenyuan
    Asma, Evren
    Qi, Jinyi
    MEDICAL PHYSICS, 2021, 48 (09) : 5244 - 5258
  • [23] Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept
    Abouhawwash, Mohamed
    Alessio, Adam M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (08) : 2142 - 2151
  • [24] The PET image reconstruction based on weighted least-squares and TV penalty
    Tong, Ji-Jun
    Liu, Jin
    Cai, Qiang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2013, 41 (04): : 787 - 790
  • [25] DRGAN: a deep residual generative adversarial network for PET image reconstruction
    Du, Qianqian
    Qiang, Yan
    Yang, Wenkai
    Wang, Yanfei
    Ma, Yong
    Zia, Muhammad Bilal
    IET IMAGE PROCESSING, 2020, 14 (09) : 1690 - 1700
  • [26] 3D PET image reconstruction based on the maximum likelihood estimation method (MLEM) algorithm
    Slomski, Artur
    Rudy, Zbigniew
    Bednarski, Tomasz
    Bialas, Piotr
    Czerwinski, Eryk
    Kaplon, Lukasz
    Kochanowski, Andrzej
    Korcyl, Grzegorz
    Kowal, Jakub
    Kowalski, Pawel
    Kozik, Tomasz
    Krzemien, Wojciech
    Molenda, Marcin
    Moskal, Pawel
    Niedzwiecki, Szymon
    Palka, Marek
    Pawlik, Monika
    Raczynski, Lech
    Salabura, Piotr
    Gupta-Sharma, Neha
    Silarski, Michal
    Smyrski, Jerzy
    Strzelecki, Adam
    Wislicki, Wojciech
    Zielinski, Marcin
    Zon, Natalia
    BIO-ALGORITHMS AND MED-SYSTEMS, 2014, 10 (01) : 1 - 7
  • [27] Image Reconstruction Based on Convolutional Neural Network for Electrical Resistance Tomography
    Tan, Chao
    Lv, Shuhua
    Dong, Feng
    Takei, Masahiro
    IEEE SENSORS JOURNAL, 2019, 19 (01) : 196 - 204
  • [28] Super-resolution image reconstruction based on RBF neural network
    Zhu F.-Z.
    Li J.-Z.
    Zhu B.
    Li D.-D.
    Yang X.-F.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (06): : 1444 - 1451
  • [29] Image Inpainting Based on Interactive Separation Network and Progressive Reconstruction Algorithm
    Gong, Jun
    Li, Siyuan
    Chen, Shiyu
    Nie, Liang
    Cheng, Xin
    Zhang, Zhiqiang
    Yu, Wenxin
    IEEE ACCESS, 2022, 10 : 67814 - 67825
  • [30] Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network
    Schramm, Georg
    Rigie, David
    Vahle, Thomas
    Rezaei, Ahmadreza
    Van Laere, Koen
    Shepherd, Timothy
    Nuyts, Johan
    Boada, Fernando
    NEUROIMAGE, 2021, 224