RESTRICTIONS ON HARMONIC MAPS OF SURFACES

被引:102
作者
EELLS, J
WOOD, JC
机构
[1] UNIV WARWICK,COVENTRY,ENGLAND
[2] BRIGHTON POLYTECH,BRIGHTON BN2 4GJ,ENGLAND
关键词
D O I
10.1016/0040-9383(76)90042-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:263 / 266
页数:4
相关论文
共 15 条
[1]  
BEHNKE H, 1955, THEORIE ANALYTISCHEN
[2]   VOLUME DECREASING PROPERTY OF A CLASS OF REAL HARMONIC MAPPINGS [J].
CHERN, S ;
GOLDBERG, SI .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (01) :133-147
[3]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[4]   ON EXTREMAL QUASI-CONFORMAL MAPPINGS .1. [J].
GERSTENHABER, M ;
RAUCH, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1954, 40 (09) :808-816
[5]  
Hirzebruch F, 1966, TOPOLOGICAL METHODS
[6]   Smallest occulation in a type of surface mapping. [J].
Kneser, H .
MATHEMATISCHE ANNALEN, 1930, 103 :347-358
[7]  
LEMAIRE L, 1975, CR ACAD SCI A MATH, V280, P897
[8]  
Milnor J. W., 1958, COMMENT MATH HELV, V32, P215, DOI 10.1007/BF02564579
[9]  
SMITH RT, 1972, THESIS WARWICK
[10]  
STEENROD N, 1957, TOPOLOGY FIBRE BUNDL