Polymeric nanosystems for drug and gene delivery

被引:1
作者
Amiji, Mansoor [1 ]
van Vlerken, Lilian [2 ]
Devalapally, Harikrishna [3 ]
Shenoy, Dinesh [4 ]
Komareddy, Sushma [5 ]
Bhavsar, Mayank [6 ]
机构
[1] Northeastern Univ, Sch Pharm, Dept Pharmaceut Sci, Boston, MA 02115 USA
[2] Cytlmmune Inc, Rockville, MD 20850 USA
[3] Natl Canc Inst, Nanotechnol Characterizat Labs, Frederick, MD 21702 USA
[4] Novavax Inc, Rockville, MD 20850 USA
[5] Novartis Inst Biomed Res, Cambridge, MA 02139 USA
[6] Arqule Inc, Woburn, MA 01801 USA
基金
美国国家卫生研究院;
关键词
Biodegradable polymers; nanoparticles; stimuli-responsive; drug delivery; gene delivery; biological barriers; and multidrug resistance;
D O I
10.3884/0001.3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this article, we describe the different polymeric nanoparticle platforms developed in our laboratory for the targeted delivery of drugs and genes. Based on their versatility, biodegradable synthetic and natural polymers, such as poly(epsilon-caprolactone) (PCL), poly(D, L-lactide-co-glycolide) (PLGA), poly(beta-amino ester) (PbAE) and gelatin, are uniquely suited for the fabrication of targeted delivery systems for various types of therapeutic payloads. PCL, PLGA, and PbAE nanoparticle systems were used for systemic combination drug therapy a cytotoxic agent and the apoptotic signal modulator (C6-ceramide) to overcome multidrug resistance in cancer. Gelatin and modified gelatin nanoparticles were used for the delivery of reporter and therapeutic plasmid DNA. Lastly, we have formulated nanoparticles-in-microsphere oral system (NiMOS) for oral gene delivery and transfection in specific regions of the gastrointestinal tract. In each case, special emphasis is placed on the use of safe materials and delivery systems that offer opportunities for multi-functionalization to allow for targeted stimuli-responsive and/or simultaneous strategic delivery of multiple drugs and genes to disease target.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 80 条
[1]   Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery [J].
Akinc, A ;
Lynn, DM ;
Anderson, DG ;
Langer, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5316-5323
[2]  
Bhavsar M. D., 2008, GENE THER
[3]   Polymeric nano- and microparticle technologies for oral gene delivery [J].
Bhavsar, Mayank D. ;
Amiji, Mansoor M. .
EXPERT OPINION ON DRUG DELIVERY, 2007, 4 (03) :197-213
[4]   Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design [J].
Bhavsar, MD ;
Tiwari, SB ;
Amiji, MM .
JOURNAL OF CONTROLLED RELEASE, 2006, 110 (02) :422-430
[5]   Non-viral ocular gene therapy: Potential ocular therapeutic avenues [J].
Bloquel, C. ;
Bourges, J. L. ;
Touchard, E. ;
Berdugo, M. ;
BenEzra, D. ;
Behar-Cohen, F. .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (11) :1224-1242
[6]   MECHANISM OF MULTIDRUG RESISTANCE [J].
BRADLEY, G ;
JURANKA, PF ;
LING, V .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 948 (01) :87-128
[7]   Tamoxifen retards glycosphingolipid metabolism in human cancer cells [J].
Cabot, MC ;
Giuliano, AE ;
Volner, A ;
Han, TY .
FEBS LETTERS, 1996, 394 (02) :129-131
[8]   Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen [J].
Chawla, JS ;
Amiji, MM .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2002, 249 (1-2) :127-138
[9]   Multicellular resistance: a paradigm for clinical resistance? [J].
Desoize, B ;
Jardillier, JC .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2000, 36 (2-3) :193-207
[10]  
DEVALAPALLY H, 2006, CANC CHEMOTHER PHARM