ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

被引:0
作者
Ko, Mi-Hwa [1 ]
Kim, Tae-Sung [1 ]
机构
[1] WonKwang Univ, Dept Math, Jeonbuk 570749, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2008年 / 23卷 / 01期
关键词
functional central limit theorem; linear process in a Hilbert space; association; linear operator; Hilbert space-valued random variable;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {xi(k); k is an element of Z} be a strictly stationary associated sequence of H - valued random variables with E xi(k) = 0 and E parallel to xi(k)parallel to(2) < infinity and {a(k); k is an element of Z} a sequence of linear operators such that Sigma(infinity)(j=-infinity) parallel to a(j)parallel to(L(H)) < infinity. For a linear process X-k = Sigma(infinity)(j=-infinity)a(j)xi(k-j) we derive that {X-k} fulfills the functional central limit theorem.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 11 条
[1]  
Barlow R.E., 1981, STAT THEORY RELIABIL
[2]  
Billingsley P., 1999, WILEY SERIES PROBABI, Vsecond
[3]   Berry-Esseen inequality for linear processes in Hilbert spaces [J].
Bosq, D .
STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) :243-247
[4]  
Bosq D., 2000, LINEAR PROCESSES FUN, V149
[5]  
BROCKWELL PJ, 1987, TIME SERIES
[6]   AN INVARIANCE-PRINCIPLE FOR WEAKLY ASSOCIATED RANDOM VECTORS [J].
BURTON, RM ;
DABROWSKI, AR ;
DEHLING, H .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (02) :301-306
[7]   CENTRAL LIMIT-THEOREMS FOR ASSOCIATED RANDOM-VARIABLES AND THE PERCOLATION MODEL [J].
COX, JT ;
GRIMMETT, G .
ANNALS OF PROBABILITY, 1984, 12 (02) :514-528
[8]  
Denisevskii N. A., 1988, SOV MATH DOKL, V36, P47
[9]  
Kim Tae-Sung, 2003, [Bulletin of the KMS, 대한수학회보], V40, P715
[10]  
Kim Tae-Sung, 2002, [Communications of the KMS, 대한수학회논문집], V17, P95