A LOCAL HOPF-BIFURCATION THEOREM FOR A CERTAIN CLASS OF IMPLICIT DIFFERENTIAL-EQUATIONS

被引:10
作者
KACZYNSKI, T
KRAWCEWICZ, W
机构
[1] UNIV SHERBROOKE, DEPT MATH & INFORMAT, SHERBROOKE J1K 2R1, QUEBEC, CANADA
[2] UNIV ALBERTA, DEPT MATH, EDMONTON T6G 2G1, ALBERTA, CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1993年 / 36卷 / 02期
关键词
D O I
10.4153/CMB-1993-027-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local Hopf Bifurcation theorem is extended to implicit differential equations in R(n) of the form x = f(x, x, alpha), which are not solvable for the variable x. The proof uses the S1-degree of convex-valued mappings. An example of an implicit differential equation in R3 to which the presented theorem applies is provided.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条
[2]   HOPF-BIFURCATION FOR IMPLICIT NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
KACZYNSKI, T ;
XIA, HX .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (03) :286-295
[3]   HOPF-BIFURCATION FROM NONPERIODIC SOLUTIONS OF DIFFERENTIAL-EQUATIONS .2. [J].
JOHNSON, R ;
YI, YF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :310-340
[4]   A HOPF-BIFURCATION THEOREM FOR DIFFERENCE-EQUATIONS APPROXIMATING A DIFFERENTIAL-EQUATION [J].
HOFBAUER, J ;
IOOSS, G .
MONATSHEFTE FUR MATHEMATIK, 1984, 98 (02) :99-113
[5]   NUMERICAL COMPUTATION OF HOPF-BIFURCATION POINTS FOR PARABOLIC DIFFUSION-REACTION DIFFERENTIAL-EQUATIONS [J].
ROOSE, D ;
HLAVACEK, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (05) :1075-1085
[7]   HOPF-BIFURCATION THEOREM AND STABILITY FOR THE MAGNETO-HYDRODYNAMICS EQUATIONS [J].
Yan, Weiping .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) :471-493
[8]   A LOCAL IMPLICIT FUNCTION THEOREM AND APPLICATION TO SYSTEMS OF DIFFERENTIAL-EQUATIONS [J].
DOLEZAL, V ;
SHANKAR, S .
MATHEMATICAL SYSTEMS THEORY, 1985, 18 (03) :251-256
[9]   HOPF-BIFURCATION FOR FUNCTIONAL-EQUATIONS [J].
HALE, JK ;
DEOLIVEIRA, JCF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 74 (01) :41-59