MINIMAL NETS

被引:47
作者
BEUKEMANN, A
KLEE, WE
机构
[1] Institut für Kristallographie der Universität, D-7500 Karlsruhe
来源
ZEITSCHRIFT FUR KRISTALLOGRAPHIE | 1992年 / 201卷 / 1-2期
关键词
GRAPHS; NETS; TOPOLOGY;
D O I
10.1524/zkri.1992.201.1-2.37
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
p-Periodic minimal nets are defined. It is shown that there is a one-to-one relation between thc nets and certain finite graphs. The finite graphs, which completely characterize the nets up to isomorphism, are called the quotient graphs of the nets. For a given p the number of p-periodic nets is finite. The 2- and 3-periodic minimal nets are presented together with their quotient graphs. In addition, the quotient graphs of the 4-periodic minimal nets are listed. Nets and quotient graphs are classified according to their eigenvalue spectra.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 13 条
[1]  
BEUKEMANN A, 1989, DFTHESIS I KRISTALLO
[2]   NOMENCLATURE AND GENERATION OF 3-PERIODIC NETS - THE VECTOR METHOD [J].
CHUNG, SJ ;
HAHN, T ;
KLEE, WE .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (JAN) :42-50
[3]  
Hahn T., 1983, INT TABLES CRYSTALLO, VA. D
[4]  
Harary F., 1994, GRAPH THEORY, P11, DOI [DOI 10.21236/AD0705364, 10.1201/9780429493768, DOI 10.1201/9780429493768]
[5]  
HERRMANN D, 1985, ANGEWANDTE MATRIZENR
[6]   THE TOPOLOGY OF CRYSTAL-STRUCTURES - INVARIANTS [J].
KLEE, WE .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 179 (1-4) :67-76
[7]  
Marks R.W., 1960, DYMAXION WORLD BUCKM
[8]  
RADKE W, 1985, THESIS I KRISTALLOGR
[9]  
Smith J. V., 1982, GEOMETRICAL STRUCTUR
[10]   ENUMERATION OF 4-CONNECTED 3-DIMENSIONAL NETS AND CLASSIFICATION OF FRAMEWORK SILICATES - 3D-NETS BASED ON DOUBLE-BIFURCATED CHAINS AND THE 4.8(2) AND 4.6.12 3-CONNECTED PLANE NETS [J].
SMITH, JV ;
DYTRYCH, WJ .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1986, 175 (1-2) :31-36