A QUANTUM-MECHANICAL TWIN PARADOX

被引:6
作者
DIEKS, D
机构
[1] Department of History and Foundations of Science, Rijksuniversiteit te Utrecht, Utrecht
关键词
Berry's phase; Galilean invariance; Hannay's angle; Sagnac effect; Schrödinger theory;
D O I
10.1007/BF00769706
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a quantummechanical wavepacket undergoes a series of Galilean boosts, the Schrödinger theory predicts the occurrence of a geometrical phase effect that is an example of Berry's phase (Sagnac's phase). In the present paper the conceptual consequences of this phenomenon are considered, in particular for the status of Galilean invariance in nonrelativistic quantum mechanics, and for the relation between that theory and classical physics. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 8 条
  • [1] Berry M.V., Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 392, pp. 45-57, (1984)
  • [2] Chiao R., Berry's phase in optics: Aharonov-Bohm-like effects and gauge structures in surprising contexts, Nucl. Phys. B (Proc. Suppl.), 6, pp. 298-305, (1989)
  • [3] Sagnac G., Les systèmes optiques en mouvement et la translation de la terre, C. R. Acad. Sci. (Paris), 152, pp. 310-313, (1911)
  • [4] Anandan J., Sagnac effect in relativistic and nonrelativistic physics, Phys. Rev. D, 24, pp. 338-346, (1981)
  • [5] Werner S.A., Staudenmann J.-L., Colella R., Effect of earth's rotation on the quantum mechanical phase of the neutron, Phys. Rev. Lett., 42, pp. 1103-1106, (1979)
  • [6] Berry M.V., Classical adiabatic angles and quantal adiabatic phase, J. Phys. A: Math. Gen., 18, pp. 15-27, (1985)
  • [7] Hannay J.H., Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A: Math. Gen., 18, pp. 221-230, (1985)
  • [8] Gozzi E., Thacker W.D., Classical adiabatic holonomy in a Grassmannian system, Phys. Rev. D, 35, pp. 2388-2397, (1987)