Optimal control with delayed information flow of systems driven by G-Brownian motion

被引:7
作者
Biagini, Francesca [1 ,2 ]
Meyer-Brandis, Thilo [3 ]
Oksendal, Bernt [2 ]
Paczka, Krzysztof [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Math, Theresienstr 39, D-80333 Munich, Germany
[2] Univ Oslo, Dept Math, POB 1053 Blindern, N-0316 Oslo, Norway
[3] Univ Munich, Dept Math, Theresienstr 39, D-80333 Munich, Germany
来源
PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK | 2018年 / 3卷
基金
欧洲研究理事会;
关键词
G-Brownian motion; optimal control problem; stochastic maximum principle;
D O I
10.1186/s41546-018-0033-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study strongly robust optimal control problems under volatility uncertainty. In the G-framework, we adapt the stochastic maximum principle to find necessary and sufficient conditions for the existence of a strongly robust optimal control.
引用
收藏
页数:24
相关论文
共 14 条
[1]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[2]   STOCHASTIC MAXIMUM PRINCIPLE FOR STOCHASTIC RECURSIVE OPTIMAL CONTROL PROBLEM UNDER VOLATILITY AMBIGUITY [J].
Hu, Mingshang ;
Ji, Shaolin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (02) :918-945
[3]   A Stochastic Recursive Optimal Control Problem Under the G-expectation Framework [J].
Hu, Mingshang ;
Ji, Shaolin ;
Yang, Shuzhen .
APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (02) :253-278
[4]   Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) :1170-1195
[5]   Backward stochastic differential equations driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :759-784
[6]   ROBUST UTILITY MAXIMIZATION IN NONDOMINATED MODELS WITH 2BSDE: THE UNCERTAIN VOLATILITY MODEL [J].
Matoussi, Anis ;
Possamai, Dylan ;
Zhou, Chao .
MATHEMATICAL FINANCE, 2015, 25 (02) :258-287
[7]  
Peng S., 2010, NONLINEAR EXPECTATIO
[8]  
Peng S, 2007, ABEL SYMP, V2, P541
[9]   A complete representation theorem for G-martingales [J].
Peng, Shige ;
Song, Yongsheng ;
Zhang, Jianfeng .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (04) :609-631
[10]   Quasi-sure Stochastic Analysis through Aggregation [J].
Soner, H. Mete ;
Touzi, Nizar ;
Zhang, Jianfeng .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1844-1879