AN IMPROVED UNIFYING CONVERGENCE ANALYSIS OF NEWTON'S METHOD IN RIEMANNIAN MANIFOLDS

被引:12
作者
Argyros, Ioannis K. [1 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
关键词
Newton's method; Riemannian manifold; local/semilocal convergence; singularity of a vector field; Newton-Kantorovich method;
D O I
10.1007/BF02832359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using more precise majorizing sequences we provide a finer convergence analysis than before [1], [7] of Newton's method in Riemannian manifolds with the following advantages: weaker hypotheses, finer error bounds on the distances involved and a more precise information on the location of the singularity of the vector field.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 9 条
[1]  
ALVAREZ F, 2004, UNIFYING LOCAL CONVE
[2]  
Argyros I. K., 2005, ADV NONLINEAR VARIAT, V8, P81
[3]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[4]   An improved convergence analysis and applications for Newton-like methods in Banach space [J].
Argyros, IK .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (7-8) :653-672
[5]  
Argyros IK, 2005, NEWTON METHODS
[6]  
Carano M. Do, 1992, RIEMANNIAN GEOMETRY
[7]   Kantorovich's theorem on Newton's method in Riemannian manifolds [J].
Ferreira, OP ;
Svaiter, BF .
JOURNAL OF COMPLEXITY, 2002, 18 (01) :304-329
[8]  
Kantorovich L. V., 1982, FUNCTIONAL ANAL, VSecond
[9]   THE MAJORANT METHOD IN THE THEORY OF NEWTON-KANTOROVICH APPROXIMATIONS AND THE PTAK ERROR-ESTIMATES [J].
ZABREJKO, PP ;
NGUEN, DF .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (5-6) :671-684