The minimum distance of codes in an array coming from telescopic semigroups

被引:108
作者
Kirfel, C [1 ]
Pellikaan, R [1 ]
机构
[1] EINDHOVEN UNIV TECHNOL, DEPT MATH & COMP SCI, 5600 MB EINDHOVEN, NETHERLANDS
关键词
geometric Goppa codes; algebraic-geometric codes; algebraic curves; semigroup of Weierstrass point; Feng-Rao bound; error-correcting array; telescopic; decoding;
D O I
10.1109/18.476245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The concept of an error-correcting array gives a new bound on the minimum distance of linear codes and a decoding algorithm which decodes up to half this bound, This gives a unified point of view which explains several improvements on the minimum distance of algebraic-geometric codes, Moreover, it is explained in terms of linear algebra and the theory of semigroups only.
引用
收藏
页码:1720 / 1732
页数:13
相关论文
共 37 条
[1]   SEMIGROUPS OF INTEGERS AND APPLICATION TO BRANCHES [J].
BERTIN, J ;
CARBONNE, P .
JOURNAL OF ALGEBRA, 1977, 49 (01) :81-95
[2]  
BERTIN J, 1975, CR ACAD SCI A MATH, V280, P1745
[3]  
BRAUER A, 1962, J REINE ANGEW MATH, V211, P215
[4]  
Duursma I. M., 1993, THESIS EINDHOVEN U T
[5]   MAJORITY COSET DECODING [J].
DUURSMA, IM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :1067-1070
[6]   A NEW PROCEDURE FOR DECODING CYCLIC AND BCH CODES UP TO ACTUAL MINIMUM DISTANCE [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1364-1374
[7]   DECODING ALGEBRAIC GEOMETRIC CODES UP TO THE DESIGNED MINIMUM DISTANCE [J].
FENG, GL ;
RAO, TRN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :37-45
[8]   SIMPLIFIED UNDERSTANDING AND EFFICIENT DECODING OF A CLASS OF ALGEBRAIC-GEOMETRIC CODES [J].
FENG, GL ;
WEI, VK ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :981-1002
[9]   A SIMPLE APPROACH FOR CONSTRUCTION OF ALGEBRAIC-GEOMETRIC CODES FROM AFFINE PLANE-CURVES [J].
FENG, GL ;
RAO, TRN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1003-1012
[10]  
GARCIA A, 1992, LECT NOTES MATH, V1518, P33