A STATE-SPACE REPRESENTATION OF SEQUENTIAL ESTIMATORS

被引:0
|
作者
AMBLER, S
机构
[1] Université du Québec à Montréal, Montréal
关键词
D O I
10.1016/0165-1765(90)90126-L
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper shows how sequential estimation problems, which use regressors generated in auxiliary equations, can be transformed into state space representations. This allows estimation by exact full information maximum likelihood via the Kalman filter. © 1990.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [31] State-space representation from the viewpoints of signal processing and control
    Koshita S.
    Koshita, Shunsuke, 2018, Institute of Electrical Engineers of Japan (138) : 274 - 277
  • [32] The small open macroeconomy and the yield curve: A state-space representation
    Lange, Ronald H.
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2014, 29 : 1 - 21
  • [33] State-space representation of the wind flow model in wind farms
    Soleimanzadeh, Maryam
    Wisniewski, Rafael
    Brand, Arno
    WIND ENERGY, 2014, 17 (04) : 627 - 639
  • [34] MEANING OF STATE-SPACE REPRESENTATION AND ITS RELATION TO THE CANONICAL FORM
    NAKANO, B
    IIJIMA, J
    SATO, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (05) : 837 - 862
  • [35] Minimum Variance Distortionless Response Estimators for Linear Discrete State-Space Models
    Chaumette, Eric
    Priot, Benoit
    Vincent, Francois
    Pages, Gael
    Dion, Arnaud
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 2048 - 2055
  • [36] Sequential parameter learning and filtering in structured autoregressive state-space models
    Raquel Prado
    Hedibert F. Lopes
    Statistics and Computing, 2013, 23 : 43 - 57
  • [37] Sequential parameter learning and filtering in structured autoregressive state-space models
    Prado, Raquel
    Lopes, Hedibert F.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 43 - 57
  • [38] SEQUENTIAL MONTE CARLO OPTIMIZATION USING ARTIFICIAL STATE-SPACE MODELS
    Migue, Joaquin
    Maiz, Cristina S.
    Djuric, Petar M.
    Crisan, Dan
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 268 - +
  • [39] Tensor-train methods for sequential state and parameter learning in state-space models
    Zhao, Yiran
    Cui, Tiangang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 51
  • [40] Discovering State-Space Representation of Dynamical Systems From Noisy Data
    Hasan, Agus
    IEEE ACCESS, 2024, 12 : 108744 - 108754