Fracture of crystalline germanium during electrochemical lithium insertion

被引:49
作者
Lee, Seok Woo [1 ]
Ryu, Ill [2 ]
Nix, William D. [2 ]
Cui, Yi [2 ,3 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
Germanium; Li-ion batteries; Anode; Anisotropic expansion; Fracture;
D O I
10.1016/j.eml.2015.01.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Germanium is one of the promising alloying anode (Si, Ge, Sn) materials for high capacity lithium ion batteries. Since it is isostructural with crystalline silicon, crystalline Ge is expected to show intriguing lithiation-induced phenomena similar to Si, such as anomalous volume expansion and fracture. Here, we present the study of lithiation of Ge micropillars, and we compare the findings to silicon pillar lithiation. The critical pillar diameter similar to 1.2 mu m associated with lithiation-induced fracture of. 111. Ge pillars, determined through our statistical investigation, is much greater than the critical dimension for fracture of. 111. silicon pillars (similar to 300 nm). This larger critical size for lithiation-induced fracture of Ge likely arises from lower tensile stress concentrations at the surface due to the more inherently isotropic expansion that Ge undergoes during lithiation. Upon lithiation, Ge displays only slight anisotropy in its volume expansion, with the. 110. directions exhibiting radial expansion that is only 1.1 times larger than that along. 111. directions. Despite its relatively weak anisotropy in volume expansion, however, Ge pillars above the critical dimension still show anisotropic fracture, with favored fracture sites residing between the. 110. directions on the pillar sidewall, similar to Si. We believe that this study provides better understanding of lithiation of Ge for designing high-density anode for Li-ion batteries. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 26 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study [J].
Baggetto, Loic ;
Notten, Peter H. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A169-A175
[3]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures [J].
Chang, CL ;
Wang, YF ;
Kanamori, Y ;
Shih, JJ ;
Kawai, Y ;
Lee, CK ;
Wu, KC ;
Esashi, M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (03) :580-585
[6]   One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials [J].
Choi, Nam-Soon ;
Yao, Yan ;
Cui, Yi ;
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9825-9840
[7]   Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes [J].
Goldman, Jason L. ;
Long, Brandon R. ;
Gewirth, Andrew A. ;
Nuzzo, Ralph G. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2412-2422
[8]   Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching [J].
Hsu, Ching-Mei ;
Connor, Stephen T. ;
Tang, Mary X. ;
Cui, Yi .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[9]   Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries [J].
Key, Baris ;
Bhattacharyya, Rangeet ;
Morcrette, Mathieu ;
Seznec, Vincent ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9239-9249
[10]   Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars [J].
Lee, Seok Woo ;
Berla, Lucas A. ;
McDowell, Matthew T. ;
Nix, William D. ;
Cui, Yi .
ISRAEL JOURNAL OF CHEMISTRY, 2012, 52 (11-12) :1118-1123