RANDOM PERTURBATIONS OF REACTION-DIFFUSION EQUATIONS - THE QUASI-DETERMINISTIC APPROXIMATION

被引:89
作者
FREIDLIN, MI
机构
关键词
D O I
10.2307/2000884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:665 / 697
页数:33
相关论文
共 50 条
[41]   Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn [J].
Gu, Anhui ;
Li, Dingshi ;
Wang, Bixiang ;
Yang, Han .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) :7094-7137
[42]   Random Attractors for Stochastic Retarded Reaction-Diffusion Equations on Unbounded Domains [J].
Ding, Xiaoquan ;
Jiang, Jifa .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[43]   Fractional Reaction-Diffusion Equations [J].
R. K. Saxena ;
A. M. Mathai ;
H. J. Haubold .
Astrophysics and Space Science, 2006, 305 :289-296
[44]   ON THE SOLUTION OF REACTION-DIFFUSION EQUATIONS [J].
HILL, JM .
IMA JOURNAL OF APPLIED MATHEMATICS, 1981, 27 (02) :177-194
[45]   Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bao Quoc Tang .
STOCHASTICS AND DYNAMICS, 2016, 16 (01)
[46]   Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate [J].
Bothe, Dieter ;
Pierre, Michel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) :120-132
[47]   The Speed of a Random Front for Stochastic Reaction-Diffusion Equations with Strong Noise [J].
Mueller, Carl ;
Mytnik, Leonid ;
Ryzhik, Lenya .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (02) :699-732
[49]   Iterative analytic approximation to one-dimensional nonlinear reaction-diffusion equations [J].
Kaushik, Aditya ;
Sharma, Manju ;
Gupta, Aastha ;
Choudhary, Monika .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) :12152-12168
[50]   Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters [J].
Shishkin G.I. .
Computational Mathematics and Mathematical Physics, 2007, 47 (5) :797-828