RANDOM PERTURBATIONS OF REACTION-DIFFUSION EQUATIONS - THE QUASI-DETERMINISTIC APPROXIMATION

被引:89
作者
FREIDLIN, MI
机构
关键词
D O I
10.2307/2000884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:665 / 697
页数:33
相关论文
共 50 条
[31]   Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain [J].
Arrieta, JM ;
Carvalho, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) :143-178
[32]   Quasi-Ergodicity of transient patterns in stochastic reaction-diffusion equations [J].
Adams, Zachary P. .
ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
[33]   Time-periodic quasi-linear reaction-diffusion equations [J].
Legner, MM ;
Shapiro, VL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (01) :135-169
[34]   Generalized reaction-diffusion equations [J].
Wei, GW .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :531-536
[35]   Reaction-diffusion equations and learning [J].
Shah, J .
VARIATIONAL METHODS FOR DISCONTINUOUS STRUCTURES, 2002, 51 :171-182
[37]   Reaction-diffusion equations and learning [J].
Shah, J .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2002, 13 (1-2) :82-93
[38]   COUPLED REACTION-DIFFUSION EQUATIONS [J].
FREIDLIN, M .
ANNALS OF PROBABILITY, 1991, 19 (01) :29-57
[39]   Reaction-Diffusion Equations in Immunology [J].
Bocharov, G. A. ;
Volpert, V. A. ;
Tasevich, A. L. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (12) :1967-1976
[40]   Fractional reaction-diffusion equations [J].
Saxena, R. K. ;
Mathai, A. M. ;
Haubold, H. J. .
ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) :289-296