RANDOM PERTURBATIONS OF REACTION-DIFFUSION EQUATIONS - THE QUASI-DETERMINISTIC APPROXIMATION

被引:90
作者
FREIDLIN, MI
机构
关键词
D O I
10.2307/2000884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:665 / 697
页数:33
相关论文
共 50 条
[21]   Wave Propagation for Reaction-Diffusion Equations on Infinite Random Trees [J].
Fan, Wai-Tong Louis ;
Hu, Wenqing ;
Terlov, Grigory .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (01) :109-163
[22]   Quasi-Deterministic Properties of Random Gaussian Fields Constrained by a Large Quadratic Form [J].
Mounaix, Philippe .
JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (03) :561-582
[23]   A shadowing result with applications to finite element approximation of reaction-diffusion equations [J].
Larsson, S ;
Sanz-Serna, JM .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :55-72
[24]   Neural network approximation of optimal controls for stochastic reaction-diffusion equations [J].
Stannat, W. ;
Vogler, A. ;
Wessels, L. .
CHAOS, 2023, 33 (09)
[25]   Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle [J].
G. I. Shishkin ;
L. P. Shishkina .
Computational Mathematics and Mathematical Physics, 2008, 48 :627-640
[26]   GLOBAL DYNAMICS OF A DISCONTINUOUS GALERKIN APPROXIMATION TO A CLASS OF REACTION-DIFFUSION EQUATIONS [J].
FRENCH, DA ;
JENSEN, S .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (04) :473-487
[27]   Quasi-Deterministic Properties of Random Gaussian Fields Constrained by a Large Quadratic Form [J].
Philippe Mounaix .
Journal of Statistical Physics, 2015, 160 :561-582
[28]   Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations [J].
HuiHui Zeng .
Science China Mathematics, 2014, 57 :353-366
[29]   Approximation of a System of Singularly Perturbed Reaction-Diffusion Parabolic Equations in a Rectangle [J].
Shishkin, G. I. ;
Shishkina, L. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) :627-640
[30]   Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations [J].
Zeng HuiHui .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) :353-366