ESTIMATION THEORY OF A CLASS OF SEMIPARAMETRIC REGRESSION-MODELS

被引:0
作者
HONG, SY
机构
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1992年 / 35卷 / 06期
关键词
SEMIPARAMETRIC REGRESSION MODEL; NEAREST NEIGHBOR RULE; ASYMPTOTIC NORMALITY; OPTIMAL CONVERGENCE RATE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the semiparametric regression model Y = X'beta + g(T) + e, where (X,T) is R(P)X [0,1]-valued random variables, beta a p X 1 vector of unknown parameter, g an unknown smooth function of T in [0,1], e the random error with mean 0 and variance sigma-2 > 0, possibly unknown. Assume that e and (X,T) are independent. In this paper, the estimators-beta(n), g(n)* and sigma(n)2 of beta, g and sigma-2, respectively, based on the combination of nearest neighbor rule and least square rule, are studied. The asymptotic normalities of beta(n) 2nd sigma(n)2 and the optimal convergence rate of g(n)* are obtained under suitable conditions.
引用
收藏
页码:657 / 674
页数:18
相关论文
共 8 条
[1]  
[Anonymous], 1981, THEORY LINEAR MODELS
[2]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146
[3]   STRONG CONSISTENCY OF NEAREST NEIGHBOR REGRESSION FUNCTION ESTIMATORS [J].
CHENG, PE .
JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 15 (01) :63-72
[4]  
DVORETSKY A, 1972, 6TH P BERK S MATH ST, V2, P513
[5]   ON ASYMPTOTICALLY EFFICIENT ESTIMATION IN SEMIPARAMETRIC MODELS [J].
SCHICK, A .
ANNALS OF STATISTICS, 1986, 14 (03) :1139-1151
[6]  
SPECKMAN P, 1988, J ROY STAT SOC B MET, V50, P413
[7]   OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC ESTIMATORS [J].
STONE, CJ .
ANNALS OF STATISTICS, 1980, 8 (06) :1348-1360
[8]  
WEI LS, 1986, J MATH RES EXPOSITIO, V2, P117