Runtime Analysis of OneMax Problem in Genetic Algorithm

被引:2
作者
Du, Yifei [1 ]
Ma, QinLian [2 ]
Sakamoto, Makoto [3 ]
Furutani, Hiroshi [3 ]
Zhang, Yu-an [4 ]
机构
[1] Univ Miyazaki, Grad Sch Engn, Gakuen Kibanadai Nishi 1-1, Miyazaki, Miyazaki 8892192, Japan
[2] Univ Miyazaki, Interdisciplinary Grad Sch Agr & Engn, Miyazaki, Miyazaki 8892192, Japan
[3] Univ Miyazaki, Fac Engn, Miyazaki, Miyazaki 8892192, Japan
[4] Qinghai Univ, Dept Comp Sci & Technol, Xining, Qinghai, Peoples R China
来源
JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE | 2014年 / 1卷 / 03期
关键词
genetic algorithms; schema theory; OneMax problem; Markov model; convergence time;
D O I
10.2991/jrnal.2014.1.3.12
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Genetic algorithms (GAs) are stochastic optimization techniques, and we have studied the effects of stochastic fluctuation in the process of GA evolution. A mathematical study was carried out for GA on OneMax function within the framework of Markov chain model. We obtained the steady state solution, which represents a distribution of the first order schema frequency. We treated the task of estimating convergence time of the Markov chain for OneMax problem, and studied the effects of mutation probability and string length on the convergence time.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 8 条
  • [1] [Anonymous], 2008, MARKOV CHAINS MIXING
  • [2] The variant call format and VCFtools
    Danecek, Petr
    Auton, Adam
    Abecasis, Goncalo
    Albers, Cornelis A.
    Banks, Eric
    DePristo, Mark A.
    Handsaker, Robert E.
    Lunter, Gerton
    Marth, Gabor T.
    Sherry, Stephen T.
    McVean, Gilean
    Durbin, Richard
    [J]. BIOINFORMATICS, 2011, 27 (15) : 2156 - 2158
  • [3] Ewens J., 2004, MATH POPULATION GENE
  • [4] Furutani H., 2009, T MATH MODELING ITS, V2, P54
  • [5] Furutani H., 2003, FDN GENETIC ALGORITH, V7, P9
  • [6] Stochastic analysis of schema distribution in a multiplicative landscape
    Furutani, Hiroshi
    Katayama, Susumu
    Sakamoto, Makoto
    Ito, Takao
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2007, 11 (01) : 101 - 104
  • [7] Stochastic analysis of OneMax problem using Markov chain
    Ma, QingLian
    Zhang, Yu-an
    Koga, Kiminobu
    Yamamori, Kunihito
    Sakamoto, Makoto
    Furutani, Hiroshi
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2013, 17 (3-4) : 395 - 399
  • [8] Tan W. Y., 2002, STOCHASTIC MODELS AP