EXPLICIT SOLUTIONS FOR A NONLINEAR MODEL OF FINANCIAL DERIVATIVES

被引:21
作者
Bordag, L. A. [1 ]
Chmakova, A. Y. [2 ]
机构
[1] Halmstad Univ, Box 823, S-30118 Halmstad, Sweden
[2] Brandenburg Tech Univ Cottbus, Fak Math Naturwissenschaften & Informat, D-03044 Cottbus, Germany
关键词
Black-Scholes model; illiquidity; nonlinearity; explicit solutions;
D O I
10.1142/S021902490700407X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Families of explicit solutions are found to a nonlinear Black-Scholes equation which incorporates the feedback-effect of a large trader in case of market illiquidity. The typical solution of these families will have a payoff which approximates a strangle. These solutions were used to test numerical schemes for solving a nonlinear Black-Scholes equation.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 19 条
[1]   Hedging in incomplete markers with HARA utility [J].
Duffie, D ;
Fleming, W ;
Soner, HM ;
Zariphopoulou, T .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1997, 21 (4-5) :753-782
[2]   Singular perturbations in option pricing [J].
Fouque, JP ;
Papanicolaou, G ;
Sircar, R ;
Solna, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) :1648-1665
[3]   Risk minimization with incomplete information in a model for high-frequency data [J].
Frey, R .
MATHEMATICAL FINANCE, 2000, 10 (02) :215-225
[4]   Market volatility and feedback effects from dynamic hedging [J].
Frey, R ;
Stremme, A .
MATHEMATICAL FINANCE, 1997, 7 (04) :351-374
[5]  
Frey R., 1996, THESIS
[6]  
Frey R., 2000, MODEL RISK, P125
[7]  
Frey R., 2002, TECHNICAL REPORT
[8]  
Gaeta G., 1994, NONLINEAR SYMMETRIES, V299
[9]  
Ibragimov NH, 1999, ELEMENTARY LIE GROUP
[10]  
Lie S, 1912, VORLESUNGEN DIFFEREN