STABILITY ANALYSIS OF THE NONLINEAR MATHIEU EQUATION

被引:42
作者
MOND, M
CEDERBAUM, G
KHAN, PB
ZARMI, Y
机构
[1] SUNY STONY BROOK,DEPT PHYS,STONY BROOK,NY 11794
[2] BEN GURION UNIV NEGEV,JACOB BLAUSTEIN INST DESERT RES,CTR ENERGY & ENVIRONM PHYS,IL-84993 SEDE BOQER,ISRAEL
关键词
D O I
10.1006/jsvi.1993.1322
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The non-linear Mathieu equation is analyzed within the framework of the method of normal forms. Analytical conditions for explosive instability are obtained, and expressions for the period as well as the amplitude of the stable response are derived. © 1993 Academic Press Limited.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 14 条
[1]  
Bender Carl, 1999, ADV MATH METHODS SCI, V1
[2]  
Birkhoff G.D, 1927, DYNAM SYST
[3]  
BOSTON JR, 1970, J ACOUST SOC AM, V49, P299
[4]  
CEDERBAUM G, 1992, J APPLIED MECHANICS, V114, P16
[6]   MINIMAL NORMAL FORMS IN HARMONIC OSCILLATIONS WITH SMALL NONLINEAR PERTURBATIONS [J].
KAHN, PB ;
ZARMI, Y .
PHYSICA D, 1991, 54 (1-2) :65-74
[7]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[8]   DYNAMIC INSTABILITY OF ANTISYMMETRIC LAMINATED PLATES [J].
MOND, M ;
CEDERBAUM, G .
JOURNAL OF SOUND AND VIBRATION, 1992, 154 (02) :271-279
[9]  
Nayfeh A. H., 2008, NONLINEAR OSCIL
[10]  
POINCARE H, 1982, METHODES NOUVELLES M, P1