Computational solution of stochastic differential equations

被引:20
|
作者
Sauer, Timothy [1 ]
机构
[1] George Mason Univ, Dept Math, Fairfax, VA 22030 USA
来源
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS | 2013年 / 5卷 / 05期
基金
美国国家科学基金会;
关键词
stochastic differential equations; computational methods; diffusion problems;
D O I
10.1002/wics.1272
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Stochastic differential equations (SDEs) provide accessible mathematical models that combine deterministic and probabilistic components of dynamic behavior. This article is an overview of numerical solution methods for SDEs. The solutions are stochastic processes that represent diffusive dynamics, a common modeling assumption in many application areas. We include a description of fundamental numerical methods and the concepts of strong and weak convergence and order for SDE solvers. In addition, we briefly discuss the extension of SDE solvers to coupled systems driven by correlated noise. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:362 / 371
页数:10
相关论文
共 50 条
  • [21] A new solution method for stochastic differential equations via collocation approach
    Soheili, Ali R.
    Soleymani, F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (12) : 2079 - 2091
  • [22] SOLUTION OF LINEAR AND NONLINEAR DIFFUSION PROBLEMS VIA STOCHASTIC DIFFERENTIAL EQUATIONS
    Bargiel, Monika
    Tory, Elmer M.
    COMPUTER SCIENCE-AGH, 2015, 16 (04): : 415 - 428
  • [23] Economical Runge–Kutta methods for numerical solution of stochastic differential equations
    F. Costabile
    A. Napoli
    BIT Numerical Mathematics, 2008, 48 : 499 - 509
  • [24] The composite Milstein methods for the numerical solution of Ito stochastic differential equations
    Omar, M. A.
    Aboul-Hassan, A.
    Rabia, S. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2277 - 2299
  • [25] Runge-Kutta methods for numerical solution of stochastic differential equations
    Tocino, A
    Ardanuy, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) : 219 - 241
  • [26] Variable step size control in the numerical solution of stochastic differential equations
    Gaines, JG
    Lyons, TJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) : 1455 - 1484
  • [27] Modified equations for stochastic differential equations
    Shardlow, T
    BIT NUMERICAL MATHEMATICS, 2006, 46 (01) : 111 - 125
  • [28] Modified Equations for Stochastic Differential Equations
    Tony Shardlow
    BIT Numerical Mathematics, 2006, 46 : 111 - 125
  • [29] Computational Modeling of Streptococcus Suis Dynamics via Stochastic Delay Differential Equations
    Shafique, Umar
    Raza, Ali
    Baleanu, Dumitru
    Nasir, Khadija
    Naveed, Muhammad
    Siddique, Abu Bakar
    Fadhal, Emad
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025,
  • [30] An efficient spectral method for the numerical solution to some classes of stochastic differential equations
    Chauviere, Cedric
    Djellout, Hacene
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5888 - 5907