MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS

被引:242
|
作者
BISCHOF, H [1 ]
SCHNEIDER, W [1 ]
PINZ, AJ [1 ]
机构
[1] UNIV WIEN, INST SURVEYING & REMOTE SENSING, A-1190 VIENNA, AUSTRIA
来源
关键词
D O I
10.1109/36.142926
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent progress in neural network research has demonstrated the usefulness of neural networks in a variety of areas. In this work we report the application of three-layer back-propagation networks for classification of Landsat TM data on a pixel-by-pixel basis. The results are compared to Gaussian maximum likelihood classification. First, we show that the neural network is able to perform better than the maximum likelihood classifier. Secondly, in an extension of the basic network architecture we show that textural information can be integrated into the neural network classifier without the explicit definition of a texture measure. Finally, we examine the use of neural networks for postclassificational smoothing.
引用
收藏
页码:482 / 490
页数:9
相关论文
共 50 条
  • [41] Classification of Images Acquired with Colposcopy Using Artificial Neural Networks
    Simoes, Priscyla W.
    Izumi, Narjara B.
    Casagrande, Ramon S.
    Venson, Ramon
    Veronezi, Carlos D.
    Moretti, Gustavo P.
    da Rocha, Edroaldo L.
    Cechinel, Cristian
    Ceretta, Luciane B.
    Comunello, Eros
    Martins, Paulo J.
    Casagrande, Rogerio A.
    Snoeyer, Maria L.
    Manenti, Sandra A.
    CANCER INFORMATICS, 2014, 13 : 119 - 124
  • [42] Classification of Ultrasound Kidney Images using PCA and Neural Networks
    Attia, Mariam Wagih
    Abou-Chadi, F. E. Z.
    Moustafa, Hossam El-Din
    Mekky, Nagham
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (04) : 53 - 57
  • [43] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [44] Classification of breast thermal images using artificial neural networks
    Jakubowska, T
    Wiecek, B
    Wysocki, M
    Drews-Peszynski, C
    Strzelecki, M
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1155 - 1158
  • [45] Automatic segmentation and classification of outdoor images using neural networks
    Campbell, NW
    Thomas, BT
    Troscianko, T
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1997, 8 (01) : 137 - 144
  • [47] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [48] Classification of remotely sensed images using artificial neural networks
    Mohan, BK
    IETE JOURNAL OF RESEARCH, 2000, 46 (05) : 401 - 410
  • [49] Using convolutional neural networks for classification of malware represented as images
    Daniel Gibert
    Carles Mateu
    Jordi Planes
    Ramon Vicens
    Journal of Computer Virology and Hacking Techniques, 2019, 15 : 15 - 28
  • [50] Classification of Fingerprint Images into Individual Classes Using Neural Networks
    Karungaru, Stephen
    Fukuda, Keiji
    Fukumi, Minoru
    Akamatsu, Norio
    IECON 2008: 34TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-5, PROCEEDINGS, 2008, : 1793 - 1798