ON THE COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES GENERATED BY rho*-MIXING SEQUENCES

被引:0
作者
Ko, Mi-Hwa [1 ]
Kim, Tae-Sung [1 ]
Ryu, Dae-Hee [2 ]
机构
[1] WonKwang Univ, Inst Basic Nat Sci, Jeonbuk 570749, South Korea
[2] ChungWoon Univ, Dept Comp Sci, Chungnam 350701, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2008年 / 23卷 / 04期
关键词
moving average process; complete moment convergence; rho*-mixing; moment inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {Y-i;-infinity < i < infinity} be a doubly infinite sequence of identically distributed and.*- mixing random variables with zero means and finite variances and {a(i); -infinity < i < infinity} an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of {Sigma(n)(k-1) Sigma(infinity)(i-) (-infinity) a(i+ k)Y(i)/ n(1/p); n >= 1} under some suitable conditions. We extend Theorem 1.1 of Li and Zhang [Y. X. Li and L. X. Zhang, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), 191-197.] to the rho*-mixing case.
引用
收藏
页码:597 / 606
页数:10
相关论文
共 12 条
[1]   On the convergence of moving average processes under dependent conditions [J].
Baek, JI ;
Kim, TS ;
Liang, HY .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (03) :331-342
[2]   EQUIVALENT MIXING CONDITIONS FOR RANDOM-FIELDS [J].
BRADLEY, RC .
ANNALS OF PROBABILITY, 1993, 21 (04) :1921-1926
[3]   MOMENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF WEAKLY CORRELATED RANDOM-VARIABLES [J].
BRYC, W ;
SMOLENSKI, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :629-635
[4]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[5]  
Chow Y. S., 1988, B I MATH ACAD SINICA, V16, P177
[6]  
Ibragimov IA., 1962, TEOR VEROJATNOST PRI, V7, P349, DOI [10.1137/1107036, DOI 10.1137/1107036]
[7]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[8]   Complete moment convergence of moving-average processes under dependence assumptions [J].
Li, YX ;
Zhang, LX .
STATISTICS & PROBABILITY LETTERS, 2004, 70 (03) :191-197
[9]   Complete convergence for weighted sums of negatively associated random variables [J].
Liang, HY .
STATISTICS & PROBABILITY LETTERS, 2000, 48 (04) :317-325
[10]  
Miller C, 1994, J THEORET PROBAB, V7, P867