AN UPPER BOUND FOR THE GAIN OF STABILIZING PROPORTIONAL CONTROLLERS

被引:2
作者
BLONDEL, V
BERTILSSON, D
机构
[1] Department of Mathematics, Division of Optimization and Systems Theory, Royal Institute of Technology (KTH)
关键词
LINEAR SYSTEMS; CONTROL; STABILIZATION; PROPORTIONAL CONTROL; STATIC CONTROL; STABLE SYSTEMS; NONMINIMUM PHASE SYSTEMS;
D O I
10.1016/0167-6911(94)00023-O
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A stable linear system controlled by a proportional controller is closed-loop stable provided the controller has sufficiently small gain. If the system has an unstable zero then any proportional controller with sufficiently large gain is destabilizing. In this note we give an upper bound for the gain of stabilizing proportional controllers of stable systems that have one or more unstable zeros.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
[21]   All stabilizing PID controllers for time delay systems [J].
Hohenbichler, Norbert .
AUTOMATICA, 2009, 45 (11) :2678-2684
[22]   On the order of nonlinear time-invariant stabilizing controllers [J].
Miller, DE .
SYSTEMS & CONTROL LETTERS, 1998, 35 (02) :119-129
[23]   Robustness of High-Gain-Observer-Based Controllers to Time Delays [J].
Lei, Jing ;
Khalil, Hassan K. .
2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, :967-978
[24]   Computation of stabilizing PI and PID controllers for processes with time delay [J].
Tan, N .
ISA TRANSACTIONS, 2005, 44 (02) :213-223
[25]   The number of parameters for all stabilizing controllers without coprime factorizability [J].
Mori, Kazuyoshi .
2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, :4675-4680
[26]   PARAMETRIZATION OF ALL STABILIZING CONTROLLERS VIA QUADRATIC LYAPUNOV FUNCTIONS [J].
IWASAKI, T ;
SKELTON, RE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 85 (02) :291-307
[27]   Learning Neural Network Controllers for Stabilizing Hybrid Dynamic Systems [J].
Andreichenko, D. K. ;
Zhadaev, F. M. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (03) :354-360
[28]   STABILIZING FIRST-ORDER CONTROLLERS WITH DESIRED STABILITY REGION [J].
Saadaoui, K. ;
Ozguler, A. B. .
CONTROL AND INTELLIGENT SYSTEMS, 2009, 37 (01)
[29]   Stabilizing the second-order nonholonomic systems with chained form by finite-time stabilizing controllers [J].
He, Guangping ;
Zhang, Chenghao ;
Sun, Wei ;
Geng, Zhiyong .
ROBOTICA, 2016, 34 (10) :2344-2367
[30]   Fractional proportional-resonant current controllers for voltage source converters [J].
Heredero-Peris, Daniel ;
Chillon-Anton, Cristian ;
Sanchez-Sanchez, Enric ;
Montesinos-Miracle, Daniel .
ELECTRIC POWER SYSTEMS RESEARCH, 2019, 168 :20-45