INFORMATION-BASED ASSET PRICING

被引:47
作者
Brody, Dorje C. [1 ]
Hughston, Lane P. [2 ]
Macrina, Andrea [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Asset pricing; partial information; stochastic volatility; correlation; dividend growth; Brownian bridge; nonlinear filtering; market microstructure;
D O I
10.1142/S0219024908004749
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the corresponding price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modelled by a random variable that can be expressed as a function of a collection of independent random variables called market factors. With each such "X-factor" we associate a market information process, the values of which we assume are accessible to market participants. Each information process consists of a sum of two terms; one contains true information about the value of the associated market factor, and the other represents "noise". The noise term is modelled by an independent Brownian bridge that spans the interval from the present to the time at which the value of the factor is revealed. The market filtration is assumed to be that generated by the aggregate of the independent information processes. The price of an asset is given by the expectation of the discounted cash flows in the riskneutral measure, conditional on the information provided by the market filtration. In the case where the cash flows are the dividend payments associated with equities, an explicit model is obtained for the share-price process. Dividend growth is taken into account by introducing appropriate structure on the market factors. The prices of options on dividend-paying assets are derived. Remarkably, the resulting formula for the price of a European-style call option is of the Black-Scholes-Merton type. We consider the case where the rate at which information is revealed to the market is constant, and the case where the information rate varies in time. Option pricing formulae are obtained for both cases. The information-based framework generates a natural explanation for the origin of stochastic volatility in financial markets, without the need for specifying on an ad hoc basis the dynamics of the volatility.
引用
收藏
页码:107 / 142
页数:36
相关论文
共 25 条
[1]  
[Anonymous], 1992, SOME ASPECTS BROWN 1
[2]  
[Anonymous], 1968, FILTERING STOCHASTIC
[3]   INSIDER TRADING IN CONTINUOUS-TIME [J].
BACK, K .
REVIEW OF FINANCIAL STUDIES, 1992, 5 (03) :387-409
[4]   Information in securities markets: Kyle meets Glosten and Milgrom [J].
Back, K ;
Baruch, S .
ECONOMETRICA, 2004, 72 (02) :433-465
[5]  
Brody DC, 2007, APPL NUMER HARMON AN, P231, DOI 10.1007/978-0-8176-4545-8_13
[6]   Modeling credit risk with partial information [J].
Çetin, U ;
Jarrow, R ;
Protter, P ;
Yildirim, Y .
ANNALS OF APPLIED PROBABILITY, 2004, 14 (03) :1167-1178
[7]   Complete-market models of stochastic volatility [J].
Davis, MHA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2041) :11-26
[8]   Term structures of credit spreads with incomplete accounting information [J].
Duffie, D ;
Lando, D .
ECONOMETRICA, 2001, 69 (03) :633-664
[9]  
Fujisaki M., 1972, OSAKA J MATH, V9, P19
[10]   Probing option prices for information [J].
Geman, Helyette ;
Madan, Dilip B. ;
Yor, Marc .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2007, 9 (01) :115-131