EASY CRITERIA TO DETERMINE IF A PRIME DIVIDES CERTAIN SECOND-ORDER RECURRENCES

被引:0
作者
Somer, Lawrence [1 ]
Krizek, Michal [2 ]
机构
[1] Catholic Univ Amer, Dept Math, Washington, DC 20064 USA
[2] Acad Sci, Inst Math, CZ-11567 Prague 1, Czech Republic
来源
FIBONACCI QUARTERLY | 2013年 / 51卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(a, b) denote the set of all second-order recurrences w (a, b) satisfying the recursion relation Wn+2 = aW(n+1) + bw(n), where the discriminant D = a(2) + 4b and a, b, w(0), and w(1) are all integers. Let u(a, b) denote the recurrence with initial terms u(0) = 0 and u(1) = 1. We say that the prime p is a divisor of w(a, b) if p vertical bar w(n) for some integer n >= 0. Let z(p) denote the least positive integer n such that u(n) equivalent to 0 (mod p). Then z(p) vertical bar p - (D/p), where (D/p) denotes the Legendre symbol. Define the index i(p) as i(p) = p - (D/p)/z(p). When i(p) = 1 or 2, we will find easy criteria to determine exactly when p is a divisor of w(a, b) based on the residue class or quadratic character of w(1)(2) - aw(1)w(0) - bw(0)(2) modulo p. This generalizes results of Vandervelde when a = b = 1.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 11 条
[1]  
Backstorm R., 1966, FIBONACCI QUART, V4, P313
[2]  
Carlip W, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P691
[3]  
Carmichael R.D., 1920, Q J PURE APPL MATH, V48, P343
[4]  
CATLIN P, 1974, FIBONACCI QUART, V12, P175
[5]   ON GROUPS OF LINEAR RECURRENCES .I. [J].
LAXTON, RR .
DUKE MATHEMATICAL JOURNAL, 1969, 36 (04) :721-&
[6]   An extended theory of Lucas' functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1930, 31 :419-448
[7]  
LEHMER E, 1971, J REINE ANGEW MATH, V250, P42
[8]  
Li HC, 2000, FIBONACCI QUART, V38, P272
[9]  
Niven I., 1991, INTRO THEORY NUMBERS, V5th
[10]  
Somer Lawrence, 1992, APPL FIBONACCI NUMBE, V5, P527