EXPLICIT CONSTRUCTION OF GRAPHS WITH AN ARBITRARY LARGE GIRTH AND OF LARGE-SIZE

被引:99
作者
LAZEBNIK, F [1 ]
USTIMENKO, VA [1 ]
机构
[1] KIEV TG SHEVCHENKO STATE UNIV,DEPT MATH & MECH,KIEV 252127,UKRAINE
关键词
D O I
10.1016/0166-218X(94)00058-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k greater than or equal to 3 be a positive odd integer and q be a power of a prime. In this paper we give an explicit construction of a q-regular bipartite graph on v = 2q(k) vertices with girth g greater than or equal to k + 5. The constructed graph is the incidence graph of a flag-transitive semiplane. For any positive integer t we also give an example of a q = 2'-regular bipartite graph on v = 2q(k+1) vertices with girth g greater than or equal to k + 5 which is both vertex-transitive and edge-transitive.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 25 条
[1]   MINIMAL REGULAR GRAPHS OF GIRTHS 8 AND 12 [J].
BENSON, CT .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05) :1091-&
[2]  
Bien F., 1989, NOTICES AM MATH SOC, V36, P5
[3]   THE SEXTET CONSTRUCTION FOR CUBIC GRAPHS [J].
BIGGS, NL ;
HOARE, MJ .
COMBINATORICA, 1983, 3 (02) :153-165
[4]   NOTE ON THE GIRTH OF RAMANUJAN GRAPHS [J].
BIGGS, NL ;
BOSHIER, AG .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 49 (02) :190-194
[5]  
BIGGS NL, 1988, ARS COMBINATORIA, V25, P73
[6]  
Bollobas B., 2004, EXTREMAL GRAPH THEOR
[7]  
Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
[8]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[9]  
CHUNG FK, 1991, LECTURE NOTES AM MAT, P1
[10]   ON A CLASS OF DEGENERATE EXTREMAL GRAPH PROBLEMS [J].
FAUDREE, RJ ;
SIMONOVITS, M .
COMBINATORICA, 1983, 3 (01) :83-93