EXPLICIT CONSTRUCTION OF GRAPHS WITH AN ARBITRARY LARGE GIRTH AND OF LARGE-SIZE

被引:98
作者
LAZEBNIK, F [1 ]
USTIMENKO, VA [1 ]
机构
[1] KIEV TG SHEVCHENKO STATE UNIV,DEPT MATH & MECH,KIEV 252127,UKRAINE
关键词
D O I
10.1016/0166-218X(94)00058-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k greater than or equal to 3 be a positive odd integer and q be a power of a prime. In this paper we give an explicit construction of a q-regular bipartite graph on v = 2q(k) vertices with girth g greater than or equal to k + 5. The constructed graph is the incidence graph of a flag-transitive semiplane. For any positive integer t we also give an example of a q = 2'-regular bipartite graph on v = 2q(k+1) vertices with girth g greater than or equal to k + 5 which is both vertex-transitive and edge-transitive.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 25 条
  • [1] MINIMAL REGULAR GRAPHS OF GIRTHS 8 AND 12
    BENSON, CT
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05): : 1091 - &
  • [2] Bien F., 1989, NOTICES AM MATH SOC, V36, P5
  • [3] THE SEXTET CONSTRUCTION FOR CUBIC GRAPHS
    BIGGS, NL
    HOARE, MJ
    [J]. COMBINATORICA, 1983, 3 (02) : 153 - 165
  • [4] NOTE ON THE GIRTH OF RAMANUJAN GRAPHS
    BIGGS, NL
    BOSHIER, AG
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 49 (02) : 190 - 194
  • [5] BIGGS NL, 1988, ARS COMBINATORIA, V25, P73
  • [6] Bollobas B., 2004, EXTREMAL GRAPH THEOR
  • [7] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [8] Brouwer A.E., 1989, DISTANCE REGULAR GRA
  • [9] CHUNG FK, 1991, LECTURE NOTES AM MAT, P1
  • [10] ON A CLASS OF DEGENERATE EXTREMAL GRAPH PROBLEMS
    FAUDREE, RJ
    SIMONOVITS, M
    [J]. COMBINATORICA, 1983, 3 (01) : 83 - 93