A COMPARISON OF VARIOUS MATHEMATICAL FORMULATIONS AND NUMERICAL-SOLUTION METHODS FOR THE LARGE-AMPLITUDE OSCILLATIONS OF A STRING PENDULUM

被引:17
作者
KUHN, A [1 ]
STEINER, W [1 ]
ZEMANN, J [1 ]
DINEVSKI, D [1 ]
TROGER, H [1 ]
机构
[1] UNIV MARIBOR,MARIBOR 62000,SLOVENIA
基金
奥地利科学基金会;
关键词
D O I
10.1016/0096-3003(94)00060-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The large amplitude planar oscillations of a string pendulum the length of which can be varied is studied. The string is modeled as a massive one-dimensional viscoelastic continuum and the end mass as a point mass. Two different sets of equations of motion, one in a rotating frame (shadow frame) and the other in a space fixed nonrotating frame, are presented, resulting in systems of coupled nonlinear partial and ordinary differential equations. Four different solution strategies namely a Galerkin modal appraoch, a finite element discretization, a finite difference discretization and the use of the FE-package ANSYS are compared with each other and with experimental results.
引用
收藏
页码:227 / 264
页数:38
相关论文
共 15 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]  
BELETSKII VV, 1993, AAS PUBLICATION, V83
[3]  
GUERRIERO L, 1988, SOC ITALIANA FISICA, V14
[4]  
HAMEL G, 1949, THEORETISCHE MECHANI, V57
[5]   TETHER DAMPING IN SPACE [J].
HE, XH ;
POWELL, JD .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1990, 13 (01) :104-112
[6]  
KOHLER P, 1978, DYNAMICS SYSTEM 2 SA
[7]  
KUHN A, 1994, TR6 ESTEC REP
[8]  
LURE L, 1968, MECHANIQUE ANAL, V1
[9]  
Meirovitch L., 1980, COMPUTATIONAL METHOD, V1980
[10]  
SIMO JC, 1988, COMPUT METHODS APPL, V65, P125