ASYMPTOTIC-EXPANSION OF A CLASS OF FERMI-DIRAC INTEGRALS

被引:3
作者
BOERSMA, J [1 ]
GLASSER, ML [1 ]
机构
[1] CLARKSON UNIV,SCH SCI,POTSDAM,NY 13676
关键词
FERMI-DIRAC INTEGRAL; ASYMPTOTIC EXPANSION; RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL; LAPLACE TRANSFORM; ABELIAN ASYMPTOTICS;
D O I
10.1137/0522051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A procedure is presented for obtaining the complete asymptotic expansion of a class of fractional integrals (of Riemann-Liouville type), in which the integrand contains the product of two derivatives of the Fermi-Dirac integral. The procedure uses two-sided Laplace transforms and Abelian asymptotics of the inverse Laplace transform. The fractional integrals considered arise in various problems from statistical mechanics and solid state physics.
引用
收藏
页码:810 / 820
页数:11
相关论文
共 7 条
[1]  
[Anonymous], 1957, APPL SCI RES SECT B, DOI 10.1007/BF02920379
[2]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[3]  
DOETSCH G, 1955, HDB LAPLACE TRANSFOR, V2
[4]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VI
[5]  
GELDART DJW, UNPUB FINITE TEMPERA
[6]   EXCHANGE ENERGY OF AN ELECTRON-GAS OF ARBITRARY DIMENSIONALITY [J].
GLASSER, ML ;
BOERSMA, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (03) :535-545
[7]  
Watson GN, 1958, THEORY BESSEL FUNCTI