ON 4-MANIFOLDS HOMOTOPY EQUIVALENT TO SURFACE BUNDLES OVER SURFACES

被引:16
作者
HILLMAN, JA [1 ]
机构
[1] UNIV SYDNEY,DEPT PURE MATH,SYDNEY,NSW 2006,AUSTRALIA
关键词
EULER CHARACTERISTIC; 4-MANIFOLD; FUNDAMENTAL GROUP; KAPLANSKYS LEMMA; SURFACE BUNDLE; TOPOLOGICAL SURGERY; WHITEHEAD GROUP;
D O I
10.1016/0166-8641(91)90110-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a closed 4-manifold is homotopy equivalent to the total space of a surface bundle over a surface if the obviously necessary conditions on the fundamental group and Euler characteristic hold. When the base is the 2-sphere we need also conditions on the characteristic classes of the manifold. (Our results are incomplete when the base is the projective plane.) In most cases we can show the manifold is s-cobordant to the total space of the bundle.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 26 条
[1]  
Earle C. J., 1969, J DIFFERENTIAL GEOME, V3, P19
[2]   THE SURGERY L-GROUPS OF POLY-(FINITE OR CYCLIC) GROUPS [J].
FARRELL, FT ;
JONES, LE .
INVENTIONES MATHEMATICAE, 1988, 91 (03) :559-586
[3]   K-THEORY AND DYNAMICS .1. [J].
FARRELL, FT ;
JONES, LE .
ANNALS OF MATHEMATICS, 1986, 124 (03) :531-569
[4]  
FARRELL FT, 1981, J LOND MATH SOC, V24, P308
[5]  
Freedman M. H., 1983, P INT C MATH WARSAW, V1, P647
[6]   THE TOPOLOGY OF 4-DIMENSIONAL MANIFOLDS [J].
FREEDMAN, MH .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1982, 17 (03) :357-453
[7]   A CERTAIN SUBGROUP OF FUNDAMENTAL GROUP [J].
GOTTLIEB, DH .
AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (04) :840-&
[8]   ON FIBRE SPACES AND EVALUATION MAP [J].
GOTTLIEB, DH .
ANNALS OF MATHEMATICS, 1968, 87 (01) :42-&
[9]  
HAMBLETON I, 1988, P LOND MATH SOC, V56, P349
[10]  
HILLMAN JA, IN PRESS AUSTR MATH