ONE-DIMENSIONAL GREEN-FUNCTION IN TEMPERATURE RATE DEPENDENT THERMOELASTICITY

被引:17
作者
IGNACZAK, J
MROWKAMATEJEWSKA, E
机构
[1] IPPT, Polish Academy of Sciences, Warsaw, 00-049
关键词
Displacement Field - Green's Function - Power Series;
D O I
10.1080/01495739008927038
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article presents a study of the one-dimensional thermoelastic wave produced by an instantaneous plane source of heat in an infinite body of the G-L type. The wave can be expressed by the power series of Neumann's type associated with two wave-like operators of the G-L theory; and the series are uniformly convergent on the whole space-time domain except for the two plane wave fronts parallel to the plane of heat source, and for a large range of constitutive variables. Moreover, a restriction of the wave to a semispace lying to the right of the heat source plane represents a thermoelastic response of the semispace to short laser pulse when the boundary of semispace is clamped and the laser generates a heat on the boundary only; the response is shown to be a sum of two plane waves propagating from the boundary into the semispace depth with two different velocities vi and two different attenuations hi, (i = 1, 2) in such a way that damping of the faster wave is smaller than that of the slower one (i.e., v2 > v, > 0 and ht > h2 > 0); and on each of the wave fronts the displacement suffers a finite jump while the heat flux behaves like a Dirac delta pulse. Numerical analysis of the wave indicates that the displacement field (finite part of the heat flux field) in a fixed cross section of the semispace is dominated by that part of the displacement (finite part of the heat flux) which is connected with the faster wave passing through the cross section. © 1990 Taylor & Francis Group, LLC.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 8 条
  • [1] Carlson D.E., Linear Thermoelasticity, Encyclopedia of Physics, Mechanics of Solids II, 6, 2, (1972)
  • [2] Chandrasekharaiah D.S., Thermoelasticity with Second Sound A Review, Appl. Mech. Rev., 39, 3, pp. 355-376, (1986)
  • [3] Ignaczak J., Thermoelasticity with Finite Wave Speeds, (1989)
  • [4] Nayfeh A.H., Propagation of Thermoelastic Disturbances in Non-Fourier Solids, AIAA J., 15, 7, pp. 957-960, (1977)
  • [5] Vick B., Ozisik M.N., Growth and Decay of a Thermal Pulse Predicted by the Hyperbolic Heat Conduction Equation, J. Heat Transfer, 105, pp. 902-907, (1983)
  • [6] Ignaczak J., Generalized Thermoelasticity and Its Applications, Thermal Stresses HI, pp. 280-354, (1989)
  • [7] Stakgold I., Boundary Value Problems of Mathematical Physics, 2, (1968)
  • [8] Jakubowska M., Kirchhoff's Type Formula in Thermoelasticity with Finite Wave Speeds, J. Therm. Stresses, 7, pp. 259-288, (1984)