DNA-BASE MODIFICATIONS INDUCED IN ISOLATED HUMAN CHROMATIN BY NADH DEHYDROGENASE-CATALYZED REDUCTION OF DOXORUBICIN

被引:41
作者
AKMAN, SA [1 ]
DOROSHOW, JH [1 ]
BURKE, TG [1 ]
DIZDAROGLU, M [1 ]
机构
[1] NATL INST STAND & TECHNOL,CHEM SCI & TECHNOL LAB,GAITHERSBURG,MD 20899
关键词
D O I
10.1021/bi00128a026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The antineoplastic benzanthroquinone drug doxorubicin can undergo flavoenzyme-catalyzed one-electron reduction which, in an aerobic environment, leads to the generation of oxygen-derived species. We therefore sought to determine whether doxorubicin in the presence of NADH dehydrogenase and the transition metal ions Fe(III) or Cu(II) induces DNA base modifications in isolated human chromatin. NADH dehydrogenase-catalyzed reduction of doxorubicin (25-100-mu-M) caused hydroxyl radical production detected as methane generated from dimethyl sulfoxide; addition of isolated human chromatin to the system produced a concentration-dependent quenching of detectable hydroxyl radical formation. Doxorubicin (5-50-mu-M)-stimulated enzyme-catalyzed oxidation of NADH was also diminished, but still detectable, in the presence of chromatin. Doxorubicin-induced DNA base modifications in chromatin were measured by gas chromatography/mass spectrometry with selected-ion monitoring. Production of modified bases required the addition of transition metal ion and was enhanced by the addition of active flavoenzyme. The non-redox cycling analogue 5-iminodaunorubicin induced significantly less base modification than did doxorubicin. In the presence of Fe(III), NADH dehydrogenase-catalyzed reduction of doxorubicin caused enhancement in the content of all modified bases over control levels. Substitution of Cu(II) for Fe(III) altered both the degree and the pattern of doxorubicin/NADH dehydrogenase-induced base modifications. The scavengers of hydroxyl radical mannitol and dimethyl sulfoxide or catalase did not significantly affect doxorubicin/NADH/NADH dehydrogenase/transition metal ion-induced base modifications. Superoxide dismutase further enhanced production of all base modifications. The data demonstrate that flavoenzyme-catalyzed redox cycling of doxorubicin generates typical hydroxyl radical-induced base modifications in the DNA of isolated human chromatin, suggesting a possible mechanism for the mutagenicity of doxorubicin in vivo.
引用
收藏
页码:3500 / 3506
页数:7
相关论文
共 46 条
[1]  
[Anonymous], 2015, FREE RADICAL BIO MED
[2]   COPPER-ION-DEPENDENT DAMAGE TO THE BASES IN DNA IN THE PRESENCE OF HYDROGEN-PEROXIDE [J].
ARUOMA, OI ;
HALLIWELL, B ;
GAJEWSKI, E ;
DIZDAROGLU, M .
BIOCHEMICAL JOURNAL, 1991, 273 :601-604
[3]  
ARUOMA OI, 1989, J BIOL CHEM, V264
[4]  
AU WW, 1981, CANCER RES, V41, P376
[5]   NADPH CYTOCHROME-P-450 REDUCTASE ACTIVATION OF QUINONE ANTI-CANCER AGENTS TO FREE-RADICALS [J].
BACHUR, NR ;
GORDON, SL ;
GEE, MV ;
KON, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (02) :954-957
[6]  
BACHUR NR, 1978, CANCER RES, V38, P1745
[7]  
BACHUR NR, 1982, CANCER RES, V42, P1078
[8]   GENETIC-EFFECTS OF THYMINE GLYCOL - SITE-SPECIFIC MUTAGENESIS AND MOLECULAR MODELING STUDIES - (IONIZING-RADIATION OXIDATIVE DAMAGE HYDROXYL RADICALS) [J].
BASU, AK ;
LOECHLER, EL ;
LEADON, SA ;
ESSIGMANN, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7677-7681
[9]   HYDROGEN PEROXIDE-INDUCED BASE DAMAGE IN DEOXYRIBONUCLEIC-ACID [J].
BLAKELY, WF ;
FUCIARELLI, AF ;
WEGHER, BJ ;
DIZDAROGLU, M .
RADIATION RESEARCH, 1990, 121 (03) :338-343
[10]  
Bonner J, 1968, METHODS ENZYMOL, V12, P3