SCALING EQUATIONS FOR THE ONE-DIMENSIONAL 2-FERMION MODEL

被引:2
|
作者
MANTEA, C
APOSTOL, M
BARSAN, V
CORCIOVEI, A
FAZIO, R
GIAQUINTA, G
机构
[1] INST PHYS & NUCL ENGN,DEPT THEORET PHYS,MG-6,BUCHAREST,ROMANIA
[2] UNIV CATANIA,IST CHIM FIS,I-95129 CATANIA,ITALY
来源
PHYSICA SCRIPTA | 1989年 / 39卷 / 03期
关键词
D O I
10.1088/0031-8949/39/3/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:294 / 297
页数:4
相关论文
共 50 条
  • [31] Anomalous dynamical scaling and bifractality in the one-dimensional Anderson model
    Arias, SDT
    Luck, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38): : 7699 - 7717
  • [32] Scaling behavior in submonolayer film growth: A one-dimensional model
    Blackman, J. A.
    Mulheran, P. A.
    Physical Review B: Condensed Matter, 1996, 54 (16):
  • [33] Theoretical model in scaling analysis for one-dimensional natural circulation
    Zhao, Dong-Jian
    Li, Sheng-Qiang
    Li, Yu-Quan
    Gu, Han-Yang
    Luo, Hu
    Lu, Dong-Hua
    Reyes, J.
    Wu, Qiao
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2010, 44 (08): : 964 - 968
  • [34] New one-dimensional model equations of magnetohydrodynamic turbulence
    Yanase, S
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1010 - 1017
  • [35] Scaling properties of a one-dimensional sandpile model with grain dissipation
    Jettestuen, E
    Malthe-Sorenssen, A
    PHYSICAL REVIEW E, 2005, 72 (06):
  • [36] Scaling behavior in submonolayer film growth: A one-dimensional model
    Blackman, JA
    Mulheran, PA
    PHYSICAL REVIEW B, 1996, 54 (16): : 11681 - 11692
  • [37] Dynamic scaling in a simple one-dimensional model of dislocation activity
    Deslippe, J
    Tedstrom, R
    Daw, MS
    Chrzan, D
    Neeraj, T
    Mills, M
    PHILOSOPHICAL MAGAZINE, 2004, 84 (23) : 2445 - 2454
  • [38] ONE-DIMENSIONAL MODEL OF REARRANGEMENT PROCESS AND FADDEEV EQUATIONS
    LIPSZYC, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) : 133 - 138
  • [39] An impurity in one-dimensional interacting fermion system
    Ding, GH
    Xu, BW
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 27 (03) : 293 - 296
  • [40] One-dimensional model equations for hyperbolic fluid flow
    Do, Tam
    Vu Hoang
    Radosz, Maria
    Xu, Xiaoqian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 1 - 11