A REMARK ON ZETA(2N)

被引:0
|
作者
RAMACHANDRA, K
SANKARANARAYANAN, A
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:891 / 895
页数:5
相关论文
共 50 条
  • [1] MORE LIKE ZETA-(2[N/2]) THAN ZETA-(2N)
    NEWCOMB, WA
    AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (09): : 744 - 745
  • [2] A RECURRENCE FORMULA FOR ZETA-(2N)
    KUO, HT
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (06) : 573 - 574
  • [3] Generalized rational zeta series for ζ( 2n) and ζ( 2n+1)
    Orr, Derek
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (12) : 966 - 987
  • [4] ANOTHER ELEMENTARY PROOF OF EULERS FORMULA FOR ZETA (2N)
    APOSTOL, TM
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04): : 425 - 431
  • [5] Finding zeta(2n) from a recursion relation for Bernoulli numbers
    Osler, Thomas J.
    Zeng, Jim
    MATHEMATICAL GAZETTE, 2007, 91 (520): : 123 - 126
  • [7] (2n, 2n, 2n, 1)-Relative Difference Sets and Their Representations
    Zhou, Yue
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (12) : 563 - 584
  • [8] High Precision Multiplier for RNS {2n - 1, 2n, 2n
    Ma, Shang
    Hu, Shuai
    Yang, Zeguo
    Wang, Xuesi
    Liu, Meiqing
    Hu, Jianhao
    ELECTRONICS, 2021, 10 (09)
  • [9] On abelian (2n, n, 2n, 2)-difference sets
    Hiramine, Yutaka
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 996 - 1003
  • [10] On (2n, 2, 2n, n) relative difference sets
    Hiramine, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 101 (02) : 281 - 284