A HYBRID ALGORITHM FOR OPTIMIZING EIGENVALUES OF SYMMETRICAL DEFINITE PENCILS

被引:8
作者
HAEBERLY, JPA [1 ]
OVERTON, ML [1 ]
机构
[1] NYU,COURANT INST MATH SCI,DEPT COMP SCI,NEW YORK,NY 10012
关键词
NONSMOOTH OPTIMIZATION; GENERALIZED EIGENVALUE PROBLEM; MATRIX PENCIL; LYAPUNOV EQUATIONS;
D O I
10.1137/S0895479893244833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is presented for the optimization of the maximum eigenvalue of a symmetric definite pencil depending affinely on a vector of parameters. The algorithm uses a hybrid approach, combining a scheme based on the method of centers, developed by Boyd and El Ghaoui [Linear Algebra Appl., 188 (1993), pp. 63-1121, with a new quadratically convergent local scheme. A convenient expression for the generalized gradient of the maximum eigenvalue of the pencil is also given, expressed in terms of a dual matrix. The algorithm computes the dual matrix that establishes the optimality of the computed solution.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 18 条