A BERNSTEIN-TYPE INEQUALITY FOR THE JACOBI POLYNOMIAL

被引:21
作者
CHOW, YY
GATTESCHI, L
WONG, R
机构
[1] UNIV TURIN, DEPT MATH, I-10124 TURIN, ITALY
[2] UNIV MANITOBA, DEPT APPL MATH, WINNIPEG R3T 2N2, MANITOBA, CANADA
关键词
JACOBI POLYNOMIAL; BERNSTEIN INEQUALITY; HYPERGEOMETRIC FUNCTION;
D O I
10.2307/2160265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(n)(alpha, beta)(x) be the Jacobi polynomial of degree n. For -1/2 less-than-or-equal-to alpha, beta less-than-or-equal-to 1/2 and 0 less-than-or-equal-to theta less-than-or-equal-to pi, it is proved that (sin theta/2)alpha+1/2(cos theta/2)beta+1/2\P(n)(alpha, beta)(cos theta)\less-than-or-equal-to GAMMA(q + 1)/GAMMA(1/2)(n+q/n)N(-q-1/2), where q = max(alpha, beta) and N = n + 1/2(alpha + beta + 1) . When alpha = beta = 0, this reduces to a sharpened form of the well-known Bernstein inequality for the Legendre polynomial.
引用
收藏
页码:703 / 709
页数:7
相关论文
共 9 条
[1]  
Antonov V. A., 1981, VESTNIK LENINGRAD U, V13, P163
[2]  
BARATELLA P, 1986, ATTI ACCAD SCI SFMN, V120, P207
[3]  
Durand L., 1975, THEORY APPL SPECIAL, P353
[4]  
GASPER G, FRACTIONAL CALCULUS, V457, P207
[5]  
KERSHAW D, 1983, MATH COMPUT, V41, P607
[6]  
Lebedev NN., 1965, SPECIAL FUNCTIONS TH, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[8]   INEQUALITIES FOR ULTRASPHERICAL POLYNOMIALS AND THE GAMMA FUNCTION [J].
LORCH, L .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (02) :115-120
[9]  
SZEGO G, 1975, ORTHOGONAL POLYNOMIA