ALMOST-PERIODIC OSCILLATIONS OF EULER-LAGRANGE EQUATIONS

被引:19
作者
BLOT, J
机构
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1994年 / 122卷 / 02期
关键词
D O I
10.24033/bsmf.2233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to show the existence of a.p. (almost Periodic solutions of a Euler-Lagrange equation with a convex lagrangian and an a.p. forcing term, we introduce an hilbertian space (like a Sobolev space) of Besicovitch-a.p. functions and a notion of weak a.p. solution. We use the calculus of variations in mean and the Minty-monotonic operators.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 50 条
[21]   SOME INVARIANTS CONNECTED WITH EULER-LAGRANGE EQUATIONS [J].
Comic, Irena .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2009, 71 (02) :3-18
[22]   Conservative numerical schemes for Euler-Lagrange equations [J].
Vázquez, L ;
Jiménez, S .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (05) :455-459
[23]   Variational C∞-symmetries and Euler-Lagrange equations [J].
Muriel, C ;
Romero, JL ;
Olver, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :164-184
[24]   EXTENDED HARMONIC MAPPINGS AND EULER-LAGRANGE EQUATIONS [J].
Kikuchi, Keiichi .
PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, :284-295
[25]   On the metrics and Euler-Lagrange equations of computational anatomy [J].
Miller, MI ;
Trouvé, A ;
Younes, L .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :375-405
[26]   Reduction of Euler-Lagrange equations in gauge theories [J].
Geyer, B ;
Gitman, D ;
Tyutin, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12) :2077-2084
[27]   New order reductions for Euler-Lagrange equations [J].
Muriel, C ;
Romero, JL .
SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, :236-243
[28]   Generalized Variational Problems and Euler-Lagrange equations [J].
Agrawal, Om Prakash .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1852-1864
[29]   The Hamiltonian canonical form for Euler-Lagrange equations [J].
Zheng, Y .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (04) :385-394
[30]   Variational integrator for fractional Euler-Lagrange equations [J].
Bourdin, Loic ;
Cresson, Jacky ;
Greff, Isabelle ;
Inizan, Pierre .
APPLIED NUMERICAL MATHEMATICS, 2013, 71 :14-23