DISCRETE NONLINEAR SCHRODINGER-EQUATION UNDER NONVANISHING BOUNDARY-CONDITIONS

被引:74
|
作者
VEKSLERCHIK, VE
KONOTOP, VV
机构
[1] Institute for Radiophysics and Electronics, Academy of Science of the Ukraine, Kharkov 310085
关键词
D O I
10.1088/0266-5611/8/6/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering method for the discrete nonlinear Schrodinger equation i(dq(n)/dt) + (1 - \q(n)\2)(q(n-1) + q(n+1) - 2q(n)) + 2(rho2 - \q(n)\2)q(n) = 0 under non-vanishing boundary conditions is developed. Multisoliton solutions are obtained. A number of examples related to some physical problems is considered.
引用
收藏
页码:889 / 909
页数:21
相关论文
共 50 条
  • [21] LOCALIZATION OF CHAOS IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION
    FINLAYSON, N
    BLOW, KJ
    BERNSTEIN, LJ
    DELONG, KW
    PHYSICAL REVIEW A, 1993, 48 (05): : 3863 - 3869
  • [22] HAMILTONIAN CHAOS IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION
    FINLAYSON, N
    BLOW, KJ
    CHAOS SOLITONS & FRACTALS, 1994, 4 (8-9) : 1817 - 1834
  • [23] FULLY DISCRETE METHODS FOR THE NONLINEAR SCHRODINGER-EQUATION
    LEE, HY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (06) : 9 - 24
  • [24] QUANTUM DEFORMATIONS OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION
    SALERNO, M
    PHYSICAL REVIEW A, 1992, 46 (11): : 6856 - 6859
  • [25] EIGENVALUES OF THE SCHRODINGER-EQUATION FOR A PERIODIC POTENTIAL WITH NONPERIODIC BOUNDARY-CONDITIONS - A UNIFORM SEMICLASSICAL ANALYSIS
    CONNOR, JNL
    UZER, T
    MARCUS, RA
    SMITH, AD
    JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (10): : 5095 - 5106
  • [26] NUMERICAL IMPLEMENTATION OF ABSORBING AND INJECTING BOUNDARY-CONDITIONS FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION
    YALABIK, MC
    ECEMIS, MI
    PHYSICAL REVIEW B, 1995, 51 (04): : 2082 - 2086
  • [27] Two-soliton solution for the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions
    Chen, XJ
    Wang, HL
    Lam, WK
    PHYSICS LETTERS A, 2006, 353 (2-3) : 185 - 189
  • [28] Localized-wave interactions for the discrete nonlinear Schrodinger equation under the nonvanishing background
    Li, Min
    Shui, Juan-Juan
    Huang, Ye-Hui
    Wang, Lei
    Li, Heng-Ji
    PHYSICA SCRIPTA, 2018, 93 (11)
  • [29] Generation of solitons by a boxlike pulse in the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions
    Lashkin, VM
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [30] N-soliton solution for the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions
    Chen, XJ
    Yang, J
    Lam, WK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13): : 3263 - 3274