DISCRETE NONLINEAR SCHRODINGER-EQUATION UNDER NONVANISHING BOUNDARY-CONDITIONS

被引:76
作者
VEKSLERCHIK, VE
KONOTOP, VV
机构
[1] Institute for Radiophysics and Electronics, Academy of Science of the Ukraine, Kharkov 310085
关键词
D O I
10.1088/0266-5611/8/6/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse scattering method for the discrete nonlinear Schrodinger equation i(dq(n)/dt) + (1 - \q(n)\2)(q(n-1) + q(n+1) - 2q(n)) + 2(rho2 - \q(n)\2)q(n) = 0 under non-vanishing boundary conditions is developed. Multisoliton solutions are obtained. A number of examples related to some physical problems is considered.
引用
收藏
页码:889 / 909
页数:21
相关论文
共 20 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[4]  
AHMED S, 1987, J PHYS A, V20, P293
[5]  
CHUBYKALO DA, 1992, IN PRESS PHYS LETT A
[6]   GENERATION OF DARK SOLITONS IN OPTICAL FIBERS [J].
GREDESKUL, SA ;
KIVSHAR, YS .
PHYSICAL REVIEW LETTERS, 1989, 62 (08) :977-977
[7]   DARK-PULSE SOLITONS IN NONLINEAR-OPTICAL FIBERS [J].
GREDESKUL, SA ;
KIVSHAR, YS ;
YANOVSKAYA, MV .
PHYSICAL REVIEW A, 1990, 41 (07) :3994-4008
[8]   STUDIES OF POLARON MOTION .1. THE MOLECULAR-CRYSTAL MODEL [J].
HOLSTEIN, T .
ANNALS OF PHYSICS, 1959, 8 (03) :325-342
[9]   AN INTEGRABLE CLASSICAL SPIN CHAIN [J].
ISHIMORI, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (11) :3417-3418
[10]  
ITS AR, 1986, DOKL AKAD NAUK SSSR+, V291, P91