REDUCTION TECHNIQUES FOR INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS - SOME IDEAS AND APPLICATIONS

被引:69
作者
MAGRI, F
MOROSI, C
RAGNISCO, O
机构
[1] POLITECN MILAN, DEPARTIMENTO MATEMAT, I-20133 MILAN, ITALY
[2] UNIV ROME, DEPARTIMENTO FIS, I-00185 ROME, ITALY
[3] NATL INST NUCL PHYS, ROME, ITALY
关键词
D O I
10.1007/BF01466596
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:115 / 140
页数:26
相关论文
共 39 条
[1]  
ABLOWITZ M, 1983, LECTURE NOTES PHYSIC, V189
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
ABLOWITZ MJ, 1978, STUD APPL MATH, V58, P17
[4]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[5]  
ABRAHAM R, 1978, F MECHANICS
[6]   THE NON-LINEAR EVOLUTION-EQUATIONS RELATED TO THE WADATI-KONNO-ICHIKAWA SPECTRAL PROBLEM [J].
BOITI, M ;
PEMPINELLI, F ;
TU, GZ .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :48-64
[7]   THE NONABELIAN TODA LATTICE-DISCRETE ANALOG OF THE MATRIX SCHRODINGER SPECTRAL PROBLEM [J].
BRUSCHI, M ;
MANAKOV, SV ;
RAGNISCO, O ;
LEVI, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2749-2753
[8]   THE CHIRAL FIELD HIERARCHY [J].
BRUSCHI, M ;
LEVI, D ;
RAGNISCO, O .
PHYSICS LETTERS A, 1982, 88 (08) :379-382
[9]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM ASSOCIATED WITH MULTICHANNEL SCHRODINGER PROBLEM, AND PROPERTIES OF THEIR SOLUTIONS [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1976, 15 (03) :65-69
[10]  
Calogero F., 1982, SPECTRAL TRANSFORM S, V1