A fixed-center spherical separation algorithm with kernel transformations for classification problems

被引:22
作者
Astorino, A. [1 ]
Gaudioso, M. [2 ]
机构
[1] Univ Calabria, Ist Calcolo & Reti Alte Prestaz, CNR, DEIS, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Calabria, Dipartimento Elettron Informat & Sistemist, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Classification; Separability; Kernel methods; Support vector machine;
D O I
10.1007/s10287-007-0051-2
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We consider a special case of the optimal separation, via a sphere, of two discrete point sets in a finite dimensional Euclidean space. In fact we assume that the center of the sphere is fixed. In this case the problem reduces to the minimization of a convex and nonsmooth function of just one variable, which can be solved by means of an "ad hoc" method inO(p log p) time, where p is the dataset size. The approach is suitable for use in connection with kernel transformations of the type adopted in the support vector machine (SVM) approach. Despite of its simplicity the method has provided interesting results on several standard test problems drawn from the binary classification literature.
引用
收藏
页码:357 / 372
页数:16
相关论文
共 11 条
[1]  
[Anonymous], 1992, UCI REPOSITORY MACHI
[2]   Ellipsoidal separation for classification problems [J].
Astorino, A ;
Gaudioso, M .
OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (2-3) :261-270
[3]   Polyhedral separability through successive LP [J].
Astorino, A ;
Gaudioso, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (02) :265-293
[4]  
Bennett KP., 1992, OPTIM METHODS SOFTW, V1, P23, DOI [DOI 10.1080/10556789208805504, DOI 10.1080/10556789208805504.25]
[5]  
Cristianini N., 2000, INTRO SUPPORT VECTOR
[6]  
FUNG G, 2001, P KDD 2001 KNOWL DIS, P77, DOI DOI 10.1145/502512.502527
[7]  
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
[8]   PATTERN SEPARATION BY CONVEX PROGRAMMING [J].
ROSEN, JB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 10 (01) :123-&
[9]  
Scholkopf B., 1998, ADV KERNEL METHODS S
[10]  
Tax D. M. J., 1999, 7th European Symposium on Artificial Neural Networks. ESANN'99. Proceedings, P251