Practical precursor aspects for electron beam induced deposition

被引:18
作者
Mulders, J. J. L. [1 ]
机构
[1] FEI Co, Achtseweg Noord 5, NL-5600 MD Eindhoven, Netherlands
来源
NANOFABRICATION | 2014年 / 1卷 / 01期
关键词
EBID; precursor; properties;
D O I
10.2478/nanofab-2014-0007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The purity of a structure made with electron beam induced deposition (EBID) is a the major concern when creating micro and nano-scale functionalities, for example for rapid prototyping. Substantial research focuses on the improvements of the purity using chemical vapor deposition (CVD) based precursors. However, from a practical point of view, many other aspects of a precursor are very relevant in the design of a process and the actual use of a tool for EBID. To a large extent, these precursor-related characteristics will determine whether or not a precursor can successfully be applied. Some of these characteristics include: vapor pressure range, transition behavior, chemical stability, pyrolitic thresholds, release of corrosive ligands during deposition, toxicity, commercial availability, compatibility with the instrument and operator safety. These characteristic are discussed in more detail here in order to understand what an ideal EBID precursor may be. Although some parameters such as toxicity or flammability seem less important, in practice they can be a road block for application unless the main instrument, such as a regular scanning electron microscope (SEM), is adapted accordingly.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 10 条
[1]   Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth [J].
Belova, L. M. ;
Dahlberg, E. D. ;
Riazanova, A. ;
Mulders, J. J. L. ;
Christophersen, C. ;
Eckert, J. .
NANOTECHNOLOGY, 2011, 22 (14)
[2]   Purification of platinum and gold structures after electron-beam-induced deposition [J].
Botman, A. ;
Mulders, J. J. L. ;
Weemaes, R. ;
Mentink, S. .
NANOTECHNOLOGY, 2006, 17 (15) :3779-3785
[3]   Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold [J].
Brintlinger, T ;
Fuhrer, MS ;
Melngailis, J ;
Utke, I ;
Bret, T ;
Perentes, A ;
Hoffmann, P ;
Abourida, M ;
Doppelt, P .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (06) :3174-3177
[4]   Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition [J].
Fernandez-Pacheco, A. ;
De Teresa, J. M. ;
Cordoba, R. ;
Ibarra, M. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
[5]   Compact UHV system for fabrication and in situ analysis of electron beam deposited structures using a focused low energy electron beam [J].
Kakefuda, Y. ;
Yamashita, Y. ;
Mukai, K. ;
Yoshinobu, J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (05)
[6]   Fabrication and characterization of platinum nanocrystalline material grown by electron-beam induced deposition [J].
Koops, HWP ;
Kaya, A ;
Weber, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06) :2400-2403
[7]   A new sequential EBID process for the creation of pure Pt structures from MeCpPtMe3 [J].
Mehendale, S. ;
Mulders, J. J. L. ;
Trompenaars, P. H. F. .
NANOTECHNOLOGY, 2013, 24 (14)
[8]   Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement [J].
Mulders, J. J. L. ;
Belova, L. M. ;
Riazanova, A. .
NANOTECHNOLOGY, 2011, 22 (05)
[9]  
Utke I., 2012, NANOFABRICATION USIN
[10]   Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV) [J].
Wnuk, Joshua D. ;
Gorham, Justin M. ;
Rosenberg, Samantha G. ;
van Dorp, Willem F. ;
Madey, Theodore E. ;
Hagen, Cornelis W. ;
Fairbrother, D. Howard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (06) :2487-2496