CO2 dissociation using the Versatile atmospheric dielectric barrier discharge experiment (VADER)

被引:27
作者
Lindon, Michael A. [1 ]
Scime, Earl E. [1 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, Box 6315,135 Willey St, Morgantown, WV 26506 USA
关键词
plasma chemistry; plasma chemical model; dielectric barrier discharge; atmospheric plasmas; CO2; dissociation; reduction; plasma physics;
D O I
10.3389/fphy.2014.00055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD) with a simple, zero dimensional (0-D) chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of CO2 within a planar DBD, while the gas flow rate, voltage, gas composition, driving frequency, catalyst, and pulse modes were varied. Some of the VADER results include a maximum CO2 dissociation energy efficiency of 2.5 +/- 0.5%, a maximum CO2 dissociation rate of 4 +/- 0.4 x10(-6) mol CO2/s (5 +/- 0.5% percent dissociation), discovering that a resonant driving frequency of similar to 30 kHz, dependent on both applied voltage and breakdown voltage, is best for efficient CO2 dissociation and that TiO2, a photocatalyst, improved dissociation efficiencies by an average of 18% at driving frequencies above 5 kHz.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 71 条
[1]   Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges [J].
Aerts, Robby ;
Martens, Tom ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23257-23273
[2]  
[Anonymous], 2011, ACC UPT CCS IND US C
[3]   Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O [J].
Anzai, K. ;
Kato, H. ;
Hoshino, M. ;
Tanaka, H. ;
Itikawa, Y. ;
Campbell, L. ;
Brunger, M. J. ;
Buckman, S. J. ;
Cho, H. ;
Blanco, F. ;
Garcia, G. ;
Limao-Vieira, P. ;
Ingolfsson, O. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (02)
[4]   REACTION OF OZONE WITH CARBON-MONOXIDE [J].
ARIN, LM ;
WARNECK, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1972, 76 (11) :1514-&
[5]   Evaluated kinetic and photochemical data for atmospheric chemistry:: Volume I -: gas phase reactions of Ox, HOx, NOx and SOx species [J].
Atkinson, R ;
Baulch, DL ;
Cox, RA ;
Crowley, JN ;
Hampson, RF ;
Hynes, RG ;
Jenkin, ME ;
Rossi, MJ ;
Troe, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :1461-1738
[6]   Chemical kinetics simulation for atmospheric pressure air plasmas in a streamer regime [J].
Barni, R ;
Esena, P ;
Riccardi, C .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (07)
[7]  
Blauer J, 1973, SURVEY VIBRATIONAL R
[8]  
Bulmer G., 1979, DOVER BOOKMATH SER
[9]   CONTRIBUTION OF VIBRATIONAL-EXCITATION TO RATE OF CARBON-DIOXIDE DISSOCIATION IN ELECTRICAL DISCHARGES [J].
CAPEZZUTO, P ;
CRAMAROSSA, F ;
DAGOSTINO, R ;
MOLINARI, E .
JOURNAL OF PHYSICAL CHEMISTRY, 1976, 80 (08) :882-888
[10]   Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges [J].
Carman, RJ ;
Mildren, RP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (19) :L99-L103