Indirect proof: what is specific to this way of proving?

被引:33
作者
Antonini, Samuele [1 ]
Mariotti, Maria Alessandra [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
[2] Univ Siena, Dipartimento Sci Matemat Informat, I-53100 Siena, Italy
来源
ZDM-MATHEMATICS EDUCATION | 2008年 / 40卷 / 03期
关键词
Proof; Argumentation; Indirect proof; Proof by contradiction; Proof by contraposition;
D O I
10.1007/s11858-008-0091-2
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The study presented in this paper is part of a wide research project concerning indirect proofs. Starting from the notion of mathematical theorem as the unity of a statement, a proof and a theory, a structural analysis of indirect proofs has been carried out. Such analysis leads to the production of a model to be used in the observation, analysis and interpretation of cognitive and didactical issues related to indirect proofs and indirect argumentations. Through the analysis of exemplar protocols, the paper discusses cognitive processes, outlining cognitive and didactical aspects of students' difficulties with this way of proving.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 1991, RADICAL CONSTRUCTIVI
[2]  
Antonini S., 2004, P 28 C INT GROUP PSY, V2, P47
[3]  
Antonini S., 2003, P 2003 JOINT M PME P, V2, P49
[4]  
Antonini S., 2003, DIMOSTRARE ASSURDO A
[5]  
Barbin E., 1988, B APMEP, V366, P591
[6]  
Bellissima F., 1993, VERITA TRASMESSA LOG
[7]  
Bernardi C., 2002, B UNIONE MATH ITALIA, VVIII, P193
[8]  
Dummett M., 1977, ELEMENTS INTUITIONIS
[9]  
Durand-Guerrier, 2003, EDUC STUD MATH, V53, P5, DOI [10.1023/A:1024661004375, DOI 10.1023/A:1024661004375]
[10]  
Duval R., 1995, SEMIOSIS PENSEE HUMA