Significant advances in knowledge of lamellae and their organization in melt-crystallized polymers have stemmed from the ability to examine internal morphologies systematically with the transmission electron microscope. Spherulites form because the first-forming (dominant) lamellae branch repetitively, often at giant screw dislocations, then diverge substantially creating a skeleton to which later-forming lamellae must accommodate. This sequence promotes chain-folding, invites fractional crystallization and modulates chemical, mechanical and thermal properties of spherulites at the inter-dominant spacing. The key feature of lamellar divergence at screw dislocations is present in individual crystals, probably deriving from pressure of uncrystallized molecular cilia; growing lamellae will also distort very substantially to gain material. If necessary, spacefilling is achieved without lamellar and crystallographic continuity by nucleating new growth at large misorientations. Individual melt-grown crystals have been studied both after extraction from a quenched matrix and in situ in thinned specimens. For polyethylene different lamellar profiles have been placed in context while their fine structure provides insights into molecular mechanisms of growth.