ON QUANTUM GROUP INVARIANT SPIN CHAINS AT ROOTS OF UNITY END 2-POINT CORRELATION-FUNCTIONS

被引:0
作者
HINRICHSEN, H
机构
[1] Institut für Theoretische Physik, Freie Universität Berlin, Berlin, D-14195
关键词
D O I
10.1007/BF01690455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the recent developement in the investigation of quantum group invariant two-point correlation functions for quantum spin chains. Starting from the algebraic definition of invariant two-point operators which are already known for the XXZ Heisenberg chain, we compute the corresponding correlation function for the XY chain. The uniqueness and the physical relevance of invariant correlation functions is discussed.
引用
收藏
页码:1029 / 1040
页数:12
相关论文
共 17 条
[1]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[2]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[3]   ON Q-TENSOR OPERATORS FOR QUANTUM GROUPS [J].
BIEDENHARN, LC ;
TARLINI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :271-278
[4]  
DENIJS N, 1988, PHASE TRANSITIONS CR, V12, P219
[5]   QUANTUM GROUPS, CORRELATION-FUNCTIONS AND INFRARED DIVERGENCES [J].
HINRICHSEN, H ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 304 (1-2) :115-120
[6]   ON THE 2-POINT CORRELATION-FUNCTIONS FOR THE U(Q)[SU(2)] INVARIANT SPIN ONE-HALF HEISENBERG CHAIN AT ROOTS OF UNITY [J].
HINRICHSEN, H ;
MARTIN, PP ;
RITTENBERG, V ;
SCHEUNERT, M .
NUCLEAR PHYSICS B, 1994, 415 (03) :533-556
[7]   QUASI HOPF QUANTUM SYMMETRY IN QUANTUM-THEORY [J].
MACK, G ;
SCHOMERUS, V .
NUCLEAR PHYSICS B, 1992, 370 (01) :185-230
[8]   A TEMPLATE FOR QUANTUM SPIN CHAIN SPECTRA [J].
MARTIN, P ;
RITTENBERG, V .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :707-730
[9]   DUAL TRANSFORMATIONS IN MANY-COMPONENT ISING MODELS [J].
MITTAG, L ;
STEPHEN, MJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :441-&
[10]  
PERK JHH, 1981, NONLINEAR INTEGRABLE