A MINIMAX THEOREM FOR VECTOR-VALUED FUNCTIONS .2.

被引:27
作者
FERRO, F
机构
[1] Departimento di Matematica, Università di Genova, Genova
关键词
MINIMAX THEOREMS; VECTOR-VALUED FUNCTIONS;
D O I
10.1007/BF00939934
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We deal with the minimax problem relative to a vector-valued function f: X0xY0--> V, where a partial ordering in the topological vector space V is induced by a closed and convex cone C. In Ref. 1, under suitable hypotheses, we proved that [GRAPHICS] the exact meaning of the symbols is given in Section 2. In this work, we prove that, under a reasonable setting of hypotheses, the previous inclusion holds and also we have that [GRAPHICS]
引用
收藏
页码:35 / 48
页数:14
相关论文
共 11 条
[1]   ON THE EXISTENCE OF PARETO EFFICIENT POINTS [J].
BORWEIN, JM .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (01) :64-73
[3]   GAMES WITH VECTOR PAYOFFS [J].
CORLEY, HW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (04) :491-498
[5]   A MINIMAX THEOREM FOR VECTOR-VALUED FUNCTIONS [J].
FERRO, F .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (01) :19-31
[6]   MINIMAX TYPE THEOREMS FOR N-VALUED FUNCTIONS [J].
FERRO, F .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 132 :113-130
[7]   CONE-EFFICIENCY, CONE-CONVEXITY AND CONE-COMPACTNESS [J].
HARTLEY, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (02) :211-222
[8]  
JOO I, 1980, ACTA SCI MATH, V42, P91
[9]  
Nieuwenhuis J. W., 1980, Mathematische Operationsforschung und Statistik, Series Optimization, V11, P41, DOI 10.1080/02331938008842630
[10]   SOME MINIMAX THEOREMS IN VECTOR-VALUED FUNCTIONS [J].
NIEUWENHUIS, JW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1983, 40 (03) :463-475